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Abstract

This Bachelor Thesis addresses the problem of generating a so-called mask for Swedish-
style crossword puzzles using evolutionary algorithms. Such a mask defines only the gen-
eral layout of a crossword, i.e. the placement of words and word-descriptions within the
rectangular grid: basically a mask assigns a specific field type to each grid cell. This how-
ever is subject to several complex constraints and quality criteria, which first have to be
(and in this thesis are) formulated. In current practice when creating a professional cross-
word puzzle, such a mask is usually still created by hand - as no algorithm capable of
creating adequate masks exists.

The problem can be seen as a constrained optimization problem over a large (exponen-
tial in the number of grid cells, 7400 for a mere 20× 20 mask), discrete search space, where
neither constraints nor the characteristic to be optimized can be formulated in a compact
form. As a globally optimal solution is neither required, nor can be found efficiently, evo-
lutionary algorithms as a heuristic optimization technique without need for a mathematical
description of the problem are a sensible choice.

First, a genetic algorithm for solving the problem is developed and implemented. It will
however be shown - by both, practical tests and theoretical considerations - that due to
extremely strong local dependencies between nearby field assignments, the crossover oper-
ator is more destructive than beneficial and ultimately the complete genetic algorithm is
outperformed slightly by a simple hillclimber.

In order to still be able to exploit the fact that globally, different areas of a mask hardly
affect each other at all, a memetic algorithm is developed using crossover as single operator
and applying a hillclimber afterwards to each resulting individual in order to repair any
damage resulting from the crossover, hence fully exploiting the solution. This approach
performs significantly better than both, a simple hillclimber and a complete genetic algo-
rithm - and generates masks that can compete with manually created ones.
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Zusammenfassung

Die Bachelorarbeit befasst sich mit dem automatischen Generieren von Kreutzworträtsel-
masken für Schwedenrätsel mittels Evolutionärer Algorithmen. Eine solche Maske legt
lediglich das generelle Layout eines Rätsels fest, d.h. die Position und Art von Angabefeldern
- nicht jedoch die im fertigen Rätsel einzutragenden Wörter. Diese Zuweisung unter-
liegt einer Reihe von Gültigkeits- und Qualitätskriterien, welche zuerst extrahiert und
formuliert werden müssen. In heutiger Praxis wird eine solche Maske üblicherweise per
Hand erstellt, da automatisch generierte Masken qualitativ minderwertig sind.

Diese Aufgabe kann als beschränktes Optimierungsproblem über einem großen (ex-
ponentiell in der Anzahl der Gridzellen) diskretem Suchraum gesehen werden, in dem
weder die Nebenbedingungen noch die zu optimierende Größe explizit formuliert wer-
den kann. Da eine global optimale Lösung weder benötigt wird noch effizient gefunden
werden kann, stellen Evolutionäre Algorithmen einen idealen Lösungsansatz dar.

Anfangs wird ein Genetischer Algorithmus entwickelt und implementiert. Es stellt sich
jedoch heraus, dass, aufgrund starker Abhängigkeiten zwischen nahe liegenden Feldzuweisun-
gen, der Crossover Operator keine Vorteile bietet, und letzten Endes liefert ein simpler
Hillclimber bessere Ergebnisse als ein kompletter Genetischer Algorithmus.

Um dennoch die Vorteile von Crossover ausnutzen zu können wird ein Memetischer Al-
gorithmus entworfen, welcher ausschließlich auf Crossover und nachfolgender “Reparatur”
der entstehenden Masken mittels eines Hillclimbers basiert. Dieser Ansatz stellt sich als
deutlich besser als ein Hillclimber oder Genetischer Algorithmus alleine heraus. Die durch
diesen Ansatz generierten Masken können qualitativ mit Hand gemachten konkurrieren.

xiii





1. About Genetic Algorithms

A genetic algorithms is a heuristic optimization technique used in computer science. As
part of the more general class of evolutionary computation, it is motivated by the process
of natural evolution, exploiting the principle of “survival of the fittest”.

The most important characteristic of evolutionary computation in general is, that very
little problem-specific domain knowledge is required: One only needs to somehow mea-
sure how good a given solution is (either absolute, or relative to other given solutions by,
for example, letting them compete against each other). Additionally, a suitable represen-
tation for solutions in the solution domain has to be found.

One however does not require any further information concerning - for example - some
gradient, as most other techniques do. On the other hand, using techniques which exploit
such information often gives better practical results for problems where such information
is available - simply due to the fact that in these cases evolutionary algorithms do not ex-
ploit all the problem knowledge available.

Genetic algorithms in particular apply these principals to discrete problems, where solu-
tions traditionally are represented as a binary string of 0s and 1s of fixed length. Arguably,
this does not impose any real limitations - as in computer science basically everything is
represented as such a binary string.

In order to achieve good results though, the binary string should represent a fixed num-
ber of (discrete) features. Furthermore, a high independence between these features, or at
least between clusters of features, is desirable.

In this chapter the basic methods of genetic algorithms: selection, mutation and crossover
will be explained, and an overview over the general functionality will be given.

1.1. General Functionality

Rather than attempting to simulate the whole process of natural evolution, genetic algo-
rithms extract only the most basic principles of this process and use them to solve a given
optimization task.

The basic algorithm operates on a fixed-size population of individuals, each represent-
ing one solution. The representation of an individual, or rather of one feature of an indi-
vidual is called genotype, while it’s behavior interpreted with respect to the given problem
is called phenotype.

1



1. About Genetic Algorithms

In a first step, each individual in the current population (current generation) is evalu-
ated by the means of a fitness function, and a subset, favoring the better individuals, is
selected. In a second step, the selected individuals are used as basis for creating the next
generation by the means of mutation and crossover. Starting with a randomly generated
first generation, this process continues until some break condition is satisfied.

Evaluation

Selection

Creation of new
Generation

Random
Initialization

Result

Break
Condition

Figure 1.1.: Schematic representation of the Algorithm

Of course this is only a very general description of the algorithm. It can and in prac-
tice is often heavily modified. For example rather than selection and creation of the next
generation being separate steps, in practice for each individual to be created, one (in case
of mutation) or two (in case of crossover) “parents” are selected by the means of some
(probabilistic) selection function. This Function can be modeled as distribution over a
discrete random variable X denoting the selected individual, with the parent generation
as domain.

1.2. Selection

As the selection is a vital part of evolutionary algorithms, the choice of the selection strat-
egy and the respective parameters can highly influence the results.

The most important aspect of the selection strategy is the selection pressure, determin-
ing how much the fitness value of an individual influences it’s chance to be selected.
While a high selection pressure heavily favors better individuals and hence leads to in-
creased convergence speed, a low selection pressure basically gives solutions with a lower
fitness value a better chance to reproduce as well, increasing the breadth of the search and

2



1.2. Selection

hence giving a better chance to avoid local optima.

Furthermore, one can choose to strictly separate the generations, i.e. only to allow newly
created individuals in the next generation (called (µ, λ) - strategy, creating λ new individu-
als by applying mutation and crossover to the best µ individuals of the parent generation).
Alternatively the new generation can be composed of both, individuals from the parent
generation which are just copied to the new generation, and newly created individuals
(called (µ+ λ) - strategy, creating λ new individuals and copying µ). A popular method is
to copy only the best individual to the next generation without changing it, while the rest
of the new generation consists only of newly created individuals.

In practice, one very popular selection function is the so-called tournament selection:
One first randomly determines α individuals (using a uniform distribution), compares
them, and selects the one with the highest fitness value.

The two simple advantages of this method are, that the selection pressure is easily con-
trollable by choice of α, and that is is very simple to implement1. Note that this method
basically translates to a probability distribution over the parent generation which only de-
pends on α and the position of an individual if the population is sorted by fitness - and not
on the actual fitness values.
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Figure 1.2.: Selection probabilities using tournament selection for a population size of 500. The

probability for an individual to be selected is given by Pr[r] = (n−r+1)α−(n−r)α

n
α

, where n ∈ N

is the population size and r ∈ [1;n] the position of the individual. Note that an individual can
participate multiple times in the same competition and hence even the worst individual has a non-
zero probability of being selected (although, obviously, a very small one).

Another possible selection function is the so called roulette-wheel selection:
Here, for each individual the probability to get selected is directly proportional to its fitness
value. This approach has the often desirable effect that big improvements are taken over
fairly quickly, while in generations where only small improvements are discovered, the
search is broadened automatically. In practice though, the overall selection pressure is

1Pseudocode for this particular selection function can be found in appendix A
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1. About Genetic Algorithms

difficult to control and highly dependent on the fitness function itself, which might pose
problems2.

select

Individuals with
high fitness

Individuals with
low fitness

rotate

Figure 1.3.: Visualization of roulette-wheel selection. Each individual is assigned a share of the
wheel proportional to it’s fitness value. The wheel is then rotated and the position it stops in
determines the individual to be selected.

1.3. Mutation

Mutation poses one of the two main operators used in order to create the new generation.

Traditionally on a bit string-level, mutating an individual simply means flipping one or
more bits, the result being a slightly modified version of the parent individual. This can be
done by randomly choosing k bits to be changed, or by specifying a mutation-probability λ

deciding for each bit whether it is flipped or not, resulting in an average of λ ·n, n denoting
the length of the bit string, bits changed. The number of bits changed is called mutation

step size.

On a higher abstraction level there are obvious other possibilities - for example adding
a (rounded) N (0, σ2)-distributed random number to some integer value, or making some
other problem- and representation-specific adjustments.

In general, mutating an individual should produce a (with respect to the given problem,
i.e. the phenotype of the individual) similar, but slightly different - and hopefully better
- child-individual. Equally, the more alike two individuals (again, with respect to their
phenotypes) are, the greater the probability for one to be the result of mutating the other
should be. This is a very important point as often some adjustments are needed to achieve
it: even in a very basic setup using individuals consisting of only one binary encoded

2This problems can partly be diminished by appropriate normalization; whereas the selection pressure can
be controlled by raising the normalized fitness values to some power p ∈ R

+ (p < 1 → less pressure;
p > 1 → more pressure) - still this often does not suffice
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1.4. Crossover

1 0 0 0 1 0

1 0 1 0 1 0 1 0 0 0 0 1

11, 15

11, 17 12, 14

parent

possible children

Figure 1.4.: Schematic representation of mutation.

integer, the genotypes (“representation”) of two individuals might be very similar while
their phenotypes (“behavior”) are fairly different (000000 = 0 and 100000 = 32). On
the other hand, two individuals having very different genotypes might be quite similar
with respect to their phenotype (100000 = 32 and 011111 = 31)3. This issue and the
consequence that, in this case a simple bit flip-mutation is very unlikely to find the, in
terms of phenotypes, very small step from 31 to 32 is widely known as Hamming Wall. It
is to mention that the later situation, i.e. very different genotypes for similar phenotypes,
can have far worse consequences than the other way round.

1.4. Crossover

The crossover operator basically takes two parent individuals, combines them and pro-
duces a child individual, simulating natural sexual reproduction. On a bit string-level,
this can be done by determining one or more splitting points and using approximately
half of each parent individual, as depicted in figure 1.5.

On a higher abstraction level again, there are other possibilities. Different numerical val-
ues can, for example, be interpolated (i.e. averaged), or even extrapolated (i.e. if 37 gives a
good result, and 40 an even better result, one might try 42 for obvious reasons) - although
admittedly the later has little to do with natural sexual reproduction.

1 1 0 0 0 1 1

1 0 0 1 1 1 0

1 1 0 0 0 1 1

1 0 0 1 1 1 0

1 1 0 0 0 1 1

1 0 0 1 1 1 0

1 1 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0

crossover point(s)

parents

child

(a) (b) (c)

Figure 1.5.: Schematic representation of crossover on a bit string-level. (a) one-point-crossover (b)
two-point-crossover (c) n-point-crossover

The value of this operator mainly lies in the assumption that different parent individ-
uals might have different strengths and weaknesses, and that with a little luck the better

3for this simple example, the problem could be greatly reduced by using a Gray-code representation, or by
performing mutation on a higher abstraction level in the first place.
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1. About Genetic Algorithms

part of each parent combined results - at least in some cases - in an even better child. It
also enables individuals to adopt improvements found by some other individual, while
retaining at least a part of their original form. Arguably this base assumption can - for
some problems - be problematic: If strong dependencies between different parts of an in-
dividual exist, ripping it apart at a random point is likely to impair both halves, hence
making the produced child useless. Similarly the two halves combined might just not be
“compatible”, leading to the same result.

As most dependencies cannot be avoided4, one simple way to reduce this problem is to
design the representation of an individual in such a way that highly dependent features
are closely together, while more independent features are at a bigger distance. Using one-
point- or two-point-crossover then minimizes the probability for these complications to
occur.

Still, even concerning problems where these problematics arise, the crossover operator
has proven to be very valuable, and using it can, for most problems, improve the result
significantly. There also are several methods designed to deal with these issues, for exam-
ple by trying to “remember” good crossover points, i.e. points at which a crossover is least
likely to have negative effects. [?].

There in fact exists some theoretical work on this subject5, but, primarily due to the high
dependence on the actual problem, it is hardly of practical relevance - in fact even it’s
theoretical justification is arguable [?].

1.5. Diversity vs. Convergence

One of the major strengths of evolutionary algorithms lies in the ability to explore the
search space very exhaustively. While for example most gradient-based approaches tend
to immediately run towards the closest extreme point - which for complex problems is
likely to be a mere local optimum - evolutionary methods in general have far better chances
to overcome such local extreme points. This is due to the simple fact that many areas of the
search space are explored simultaneously by the different individuals, while the crossover
operator allows improvements found by one individual to be - if compatible - adopted
by others; hence making the whole process more efficient than a number of independent,
local searches.

In order to fully exploit this strength however, a certain diversity within each generation
has to be assured, i.e. the individuals should not be too similar, such that they actually ex-
plore different areas of the search space (exploration). On the other hand, when keeping the
individuals well distributed, existing good solutions might not be exploited fully, leading
to extremely slow (or even stagnant) convergence (exploitation).

This so-called Exploration versus Exploitation Dilemma, is one of the most significant
problems to be dealt with; especially premature convergence towards a local optimum is
often difficult to avoid. The most obvious and direct way to influence this is the selection

4otherwise the whole problem could be split into two separate optimization problems
5see Building block hypothesis [?]
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1.6. Summary

pressure, i.e. giving less good individuals a better chance to be selected - this however is
only practicable to a certain degree, as it drastically decreases the convergence speed.

There exist a number of modifications to deal with this issue: One possibility for exam-
ple is to include the average dissimilarity to other individuals as additional criterion for
determining the fitness value (i.e. the more different compared to the other individuals an
individual is, the better its fitness value). Another possibility is to only allow individuals
that have a certain dissimilarity to all other individuals within the population (usually the
minimal dissimilarity is decreased over time). Obviously some kind of metric needs to be
defined in order to implement these approaches - for bit strings the Hamming distance is
an obvious choice.

1.6. Summary

In general it can be said that for some problems evolutionary algorithms give much bet-
ter results than any other method applicable. Exactly which problems “some” are, and
exactly how good “much better” is, often depends on design choices and the implemen-
tation itself. Especially for complex problems that are difficult - or impossible - to trace
mathematically as the problem presented in this thesis, evolutionary algorithms perform
very well.

Due to the fact that the whole process is based on heuristics and not on (practically rel-
evant) mathematical theory6, there is no absolute truth concerning design choices7. One
rather has to find a suitable setup for a specific given problem, keeping in mind that seem-
ingly small or unimportant aspects, such as the way a solution is encoded, might greatly
affect the outcome.

Furthermore there are numerous modifications not discussed at this point, which can
help in solving or reducing specific problems. For further information one can refer to
corresponding literature, for example [?].

6as already mentioned above, such theory does exist - in addition to the above one can refer for example to
Holland’s schema theorem [?] - but the practical value of these is highly questionable.

7there are however several heuristics not discussed here, for example the so-called (1/5-th) success rule - still
whether such heuristics apply is, again, highly dependable on the actual problem.
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1. About Genetic Algorithms
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2. About Crossword Masks

Crossword puzzles are said to be the most popular and widespread word game in the
world, yet they have a short history. While an early predecessor of crossword puzzles
appeared in England as early as in the 19th century, the puzzle in its today common form
has its origin in the USA, where the first of its kind was published in the New York World
in 1913 [?].
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Figure 2.1.: (a) American-style grid. (b) English-style grid. (c) Swedish-style grid (German).

Today, a variety of different crossword puzzle styles exist, some of which are shown
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2. About Crossword Masks

in figure 2.1. In this work however we will focus only on the so called Swedish-style

crossword puzzles. Such a puzzle is presented as a rectangular grid consisting of three
different types of fields: definition fields, letter fields and cut-out fields. The task of the
puzzle solver is to guess the words that are described by the definition fields and to fill out
the corresponding letter fields that are denoted by an arrow from the definition field.

In current practice, crossword puzzles are created in two steps: At first, a so-called mask
is created, denoting only the arrangement of letter fields and definition fields. The actual
words filling the puzzle are then found in a second step, resulting in the complete cross-
word puzzle. The reason for this separation is that, while efficient computer programs
exist for solving the second step, the first step is still often done manually. Although there
in fact exist computer programs which can create valid masks, those are usually of infe-
rior quality. [This introduction text, the crossword puzzle displayed in 2.1 (c) and the following

definitions of letter field, cut-out field and definition field are partly taken from [?].]

2.1. Basic Definitions

Mask: A mask is a two-dimensional rectangular grid, where each field may
be either a letter field, a definition field or a cut-out field. By intro-
duction of a set of control characters S := {0, 1, 2, 3, 4, 5, 6,#}, where
0 represents a letter field, # represents a cut-out field and 1 to 6 rep-
resent the different types of definition fields, a mask can naturally be
represented as matrix M ∈ Sn×m.

Letter field: A letter field simply denotes a blank space, which the solver of the
crossword puzzle is to fill in.

Definition field: Definition fields denote the fields where the word-descriptions are
printed in. In current crossword puzzles several types of definition
fields can be found, including so-called double definition fields and
definition fields covering two adjacent grid cells. In this thesis how-
ever, only the most common six types of definition fields are allowed,
as depicted in figure 2.2.

Cut-out field: Cut-out fields denote fields that are not part of the actual crossword
puzzle; usually they reserve space for pictures or solutions of former
puzzles.

Word: Each definition field defines exactly one word. The word starts at
a field dependent on the type of its definition field, and continues
along the corresponding row or column, until either the end of the
grid is reached, or the next field is not a letter field. Words defined by
a definition field of type 1,5 or 6 are called horizontal words, words
defined by a definition field of type 2,3 or 4 are called vertical words.

10



2.1. Basic Definitions

0 0 0 0 0 0 # # #
0 1 0 0 2 0 0 3 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 4 0 0 5 0 0 6 0
0 0 0 0 0 0 0 0 0

(a)

(b)

Figure 2.2.: (a) different field types allowed and the corresponding matrix M . The gray lines illus-
trate the words defined by the corresponding definition fields. (b) other possible definition field
types not considered in this work.
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2. About Crossword Masks

2.2. Validity Constraints

It is obvious that not every possible matrix M ∈ Sm×n corresponds to a valid crossword
mask. We therefore define four simple, absolute constraints which a valid mask has to
meet:

1. each letter field is to be part of at least one word.

2. each word has to span over at least two letters. A definition field which does not
have any corresponding letter fields simply defines a word of length zero.

3. each word is to be enclosed in between two non-letter fields.

4. no two horizontal or two vertical words may overlap.

Examples for the violation of these four constraints are shown in figure 3.2. Note that at
this point a letter field is not required to be covered horizontally and vertically, in fact there
are valid masks where no two words intersect.

(1) (2)

(3) (4)

Figure 2.3.: Violations of the four Validity Constraints.

2.3. Quality Criteria

In order to be of practical value, the validity of a mask is by far not enough. As the name
strongly suggests, in a crossword puzzle it is desirable that words actually cross, such
that finding the solution for one word gives hints towards other words. Furthermore, the
layout of the mask should be appealing to the human solver - as this is mainly a subjective
criteria, it can not be defined explicitly, however several heuristics can be formulated.

12



2.3. Quality Criteria

In addition to the above, it needs to be possible to find a number of words to fill the
crossword puzzle, such that every letter field is uniquely defined. Some basic criteria for a
“good” mask are the following:

1. Coverage: Naturally, a large number of horizontally and vertically covered fields is
desired.

2. Word lengths: the optimal word length is four to six letters. Longer words are usu-
ally more interesting for the solver, while on the other hand it becomes difficult to
find fitting words with more than eight letters; hence words with more than eight
letters should not occur frequently.

3. Clustering of definition fields: in Swedish-style crossword puzzles, large ”clusters”
of definition fields are to be avoided, such that definition fields and letter fields are
distributed as evenly as possible.

Especially long chains of adjacent definition fields are undesirable, as are so-called
”dead ends” where the first or last letter of a word is enclosed by three non-letter-
fields (excluding the ones at the left and top border, as there such situations are un-
avoidable).

(a) (b) (c)

Figure 2.4.: All three masks shown are, according to the definition above, valid masks. Mask (a)
performs quite well concerning the quality criteria: No clusters with more than 3 definition fields
exist, all word lengths are between three and six and a maximum coverage is achieved. Mask (b)
however performs significantly worse: There are three words with only length two, a cluster of
size ten splitting the whole grid in three parts, several fields which are only covered once and two
“dead ends”. Mask (c) performs even worse: As no two words intersect, it can hardly be called a
crossword puzzle.

Arguably the distinction between validity constraints and quality criteria is somewhat
arbitrary. For example one could demand that, for a mask to be valid, at least 75% of the

13



2. About Crossword Masks

letter fields are to be covered both, horizontally and vertically, or that all letter fields must
be 4-connected, i.e. the mask is not split apart by definition fields.

The motivation for the above definition of “valid” is to find a minimal set of easily ex-
pressible and simple to compute absolute properties, ensuring that the mask could (at
least theoretically) be used for a crossword. It should be clear that generating valid masks
according to this definition is trivial (see Figure 2.4 (c)), and hence the challenge lies in
creating valid masks which perform as good as possible on the quality criteria.
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3. Applying a Genetic Algorithm

3.1. General Setup

The goal of this work is to generate a valid mask performing as good on the quality criteria
as possible, such that it can be used for a crossword puzzle. The desired dimensions of the
mask, as well as the positions of cut-out fields are given at the beginning and must not
be changed - of course the resulting algorithm should be applicable for generating masks
with any reasonable dimensions and cut-out field positions.
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Figure 3.1.: Task of the algorithm.

Each mask corresponds to exactly one individual. A mask is represented simply as Ma-
trix (i.e. two-dimensional array) M ∈ Sn×m with S := {0, 1, 2, 3, 4, 5, 6,#}, as introduced
in the previous part.

3.2. The Fitness Function

It has been decided not to treat validity and quality of a mask as separate goals, but rather
to optimize both aspects simultaneously. This is justified by the fact that they are highly
interdependent: optimizing only one criterion very quickly destroys achievements con-
cerning the other one. On the other hand, a big progress concerning one criterion might be
worth small sacrifices with respect to the other. Furthermore, it is very difficult to design
operators which operate solely on valid masks - every kind of repairing algorithm either
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3. Applying a Genetic Algorithm

heavily relies on trial & error, or has to cover hundreds of situations and hence be very
complex.

This is done by accumulating penalty points for several criteria, some of which corre-
spond directly to the validity constraints, others are simple and easy to compute heuristics
to achieve the described quality criteria. Below, the features used are described in detail.
Note that the actual values used are based on preliminary testing and estimates how un-
desired the respective situations are, and have shown to give very good results in general.
Naturally they can be modified easily to enforce some aspects more than others, making
this approach very flexible.

3.2.1. Coverage

Five different coverage types are distinguished:

1. completely uncovered: 1500 penalty points

2. covered only once, but enclosed between two non-letter-fields (either horizontally or
vertically): 75 penalty points

3. covered only once: 200 penalty points

4. covered more than once in the same direction: 600 penalty points

5. covered once horizontally and vertically: 0 penalty points

1

23

4

5

Figure 3.2.: Different types of field coverage. For each type, one example is highlighted.

Type 2 often is forced to occur, for example at the left or top border of the mask - hence
it is penalized less than the similar type 3. Also note that type 4 is penalized much less
than type 1, although it is an equivalent violation of the validity constraints. The reason
for this is fairly straight forward: while leaving one field uncovered might greatly benefit
the rating of the surrounding fields, double covered fields either occur in groups of at
least two, or a word of length one is involved - in either case the surroundings account for
further penalty points.

3.2.2. Word Lengths

Word lengths are rated in two ways. Mainly penalty points are given for the length of each
word, according to a predefined function shown in table 3.1.
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3.2. The Fitness Function

Word Length Penalty Points

0 1800

1 1500

2 650

3 100

4 10

5 0

6 0

7 30

Word Length Penalty Points

8 50

9 150

10 250

11 400

12 550

13 750

14 1000

15 1300

Table 3.1.: Penalty points for different word lengths

In addition to that, intersections of two words both longer than six letters receive ad-
ditional penalty points given by the product of the lengths of the two words (i.e. a field
where, for example, two words with length 9 intersect receives an additional 81 Penalty
Points). This accounts for the fact that finding fitting words in such situations is especially
hard.

3.2.3. Clustering

The size of each 8-connected (i.e. diagonal adjacency is considered as well as horizontal
or vertical adjacency) cluster of definition fields is determined and penalized. As long
chains of adjacent definition fields are especially undesirable, the maximum of the clusters
horizontal and vertical extension is used as additional criterion for rating the cluster. An
extract from the rating table is shown in table 3.2. It is to mention that definition fields at
the left or top border of the mask are only counted half, as here clusters of size three or
four are hardly avoidable and even desired.

Cluster Maximal Penalty Points
Size Extension

1 1 0

2 2 150

3 2 288

3 3 320

4 2 542

4 3 603

4 4 670

Cluster Maximal Penalty
Size Extension Points

5 3 794

5 4 882

5 5 980

6 4 1053

6 6 1300

7 5 1620

7 7 2000

Table 3.2.: Penalty points for different cluster sizes and extensions

3.2.4. Invalid Definition Fields of Type 3,4,5,6

The validity constraint for every word to be enclosed in between two non-letter fields is,
in contrary to the other three constraints, not yet represented. Hence a penalty of 2000 is
introduced for each word violating this constraint.

17



3. Applying a Genetic Algorithm

3.2.5. Dead Ends

Dead ends are, as defined in chapter 2.3, letter fields enclosed by three adjacent non-letter
fields, excluding the fields at the top- or left border. These are penalized with 400 points.

3.2.6. Result

It is to note that the more fields a mask contains, the higher the best achievable score will
be - simply due to the fact that not all of the above points can be avoided completely. In
fact several of the above criteria work against each other: A perfect clustering score for
example can simply be achieved by not using any definition fields at all - but then the cov-
erage score would be extremely bad.

Figure 3.3 shows a plot of the rating of the best individual over a typical run of one
thousand generations, split up into quality and validity parts. It can be seen that, while
the validity component dominates at first, it is reduced very quickly, such that approxi-
mately from generation 100 onwards, the best result is always a valid mask.
Also note that within the first one hundred generations, the validity and quality compo-
nents frequently increase temporarily, while the total score is always decreasing.
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Figure 3.3.: Rating of the best individual over a run of one thousand generations. Note the loga-
rithmic scale on the x-axis

3.2.7. Localized Fitness

One advantage of the presented fitness function is, that a rating for each distinct field of a
mask can be approximated. This is done by, for example, distributing the penalty points a
large cluster receives among all fields contained in that cluster. This allows to estimate the
rating of only one half of a mask, or to localize areas that are especially “bad”, and hence
need to be improved. This concept will be used in the second part of this work. A short
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3.3. Initialization

discussion about the practical value of the masks generated with this fitness function can
be found in 5. Some (larger) exemplary, automatically generated masks can be found in
appendix B.

Figure 3.4.: The higher the local penalty rating of each field, the more red it is depicted.

3.3. Initialization

In a traditional genetic algorithm as explained in chapter 1, no problem domain knowl-
edge is used apart from the fitness function and the way a solution is encoded. Still using
such knowledge - if available - can significantly improve the results, as one can “guide”
the search towards the assumed position of an optimal solution. This however has to be
done with great care, as by imposing additional constraints one can accidentally modify
the search space in such a way, that finding a (globally) optimal solution becomes far more
difficult.

Despite these concerns, two additional modifications were made. As a first and obvious
step, field assignments which - no matter how the surrounding mask looks like - are certain
to cause a validity violation are disallowed.

In order to justify the second - far more restrictive - modification, we first need to exam-
ine an often occurring phenomenon, shown below. Avoiding this kind of arrangement by
including a penalty in the fitness function proved to be fairly ineffective: this can be ex-
plained by the fact that several fields have to be changed in order to resolve such a situation
without creating new violations - hence making it a good example for a local minimum.

The solution was to completely remove these arrangements from the search space by

• disallowing most of the definition field assignments creating such situations

• instead of using completely random initial individuals, preassigning the border-
fields with (random) fitting field types, using a (fairly simple) static algorithm.

It also showed that initializing the rest of the mask with letter fields only improves the
performance even further. One examples for a resulting initial individual can be found in
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3. Applying a Genetic Algorithm

Figure 3.5.: Words directly adjacent to a parallel border are to be avoided, such a situation is high-
lighted in red. However in order to resolve this particular situation without introducing at least
one new validity violation - resulting in an overall worse penalty (note that the mask as it is does
satisfy all validity constraints) - four fields would have to be changed simultaneously - which is
(especially for bigger masks) very unlikely to be achieved by a mutation.

figure 3.7. Note that all fields are still subject to mutation and crossover, hence the border
fields are allowed to be changed during the algorithm as well.

Figure 3.6.: Examples for some disallowed field assignments. The field type shown below each
mask is not allowed at the highlighted fields.

3.4. Mutation

A fairly obvious way to implement a mutation operator is to simply replace k randomly
chosen fields with new random field types (subject to the constraints discussed in the pre-
vious part). In order to improve the effectiveness of this operator, several modifications
were made:

• Field Type Probabilities:
When choosing a new random field type, no uniform probability distribution is used.
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3.4. Mutation

Figure 3.7.: An example for an initial individual. Not only the fields adjacent to the left / top border
are assigned, but also fields adjacent to such borders created by cut-out fields (which are given from
the beginning).

As a typical mask contains approximately 2
3 letter fields, a letter field is chosen with

probability 2
3 . Furthermore, definition fields of type 1 and 2 occur far more often than

type 3, 4, 5 and 6 - hence of the remaining 1
3 , type 1 and 2 each get a probability of 1

12
and type 3, 4, 5 and 6 each 1

24 .

• Centralized Mutation:
Instead of determining k fields to be modified separately, the first field, the central
point is chosen using a uniform distribution. The remaining fields to be modified
are then chosen close to this central point1, resulting in a more local mutation. The
reason for this is the following: Changing two or more adjacent fields often helps
overcoming a local optimum. At a bigger distance however, two changes are unlikely
to be correlated at all - together with the fact that a random change is, at least in the
later phase of the evolution, far more likely to have a (significant) negative effect than
to achieve an improvement, the probability for two uncorrelated changes together to
still improve the total score is extremely low.

• Guided Mutation:
The probability for the central point to be chosen in areas with a high number of
penalty points was increased slightly. This was done using the principal of tourna-
ment selection: α fields are chosen at random, and the one with the highest local
penalty score is selected as central point. In practice, α = 2 gave the best results;
higher values again leading to premature convergence.

1To be exact, a two-dimensional normal distribution with µ := (x, y)T and Σ := σ2I2×2, with (x, y)T denot-
ing the central point was used. Preliminary testing showed that σ = 3 is a good choice for the standard
deviation, smaller values leading to premature convergence.
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3. Applying a Genetic Algorithm

• Predefined Mutation:
Two fixed mutation types, occurring with a certain probability, were introduced:

– “shifting” a definition field of type 1 or 2 one field horizontally or vertically.

– “splitting” a long word in two halves, by inserting a field of type 1 or 2.

Figure 3.8.: “shifting” and “splitting”.

In order to compare the effectiveness of this operator for different values of k, a simple
hillclimber was used. For each setting, thirty 20× 20 masks were created. The continuous
line depicts the average of those thirty runs, the boxes depict the average plus / minus the
standard deviation. The whiskers depict the best / worst result respectively. Pseudocode
of the basic mutation operator can be found in appendix A.
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Figure 3.9.: Results for different values of k. The best result was achieved if k is chosen at random
from {2, 3}.
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Figure 3.10.: Results when using none of the modifications explained above, only centralized mu-
tation or all modifications; all runs were executed with k randomly chosen from {2, 3}. It can be
observed that using a centralized mutation has a huge impact on the effectiveness of the mutation
operator, while the other three modifications mainly increase convergence speed and only lead to
a slightly better overall result.
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3. Applying a Genetic Algorithm

3.5. Crossover

In order to better understand the results presented in this chapter, we first need to highlight
one very distinctive property of the considered problem.

As discussed in the first chapter, for all relevant optimization problems there exist (more
or less strong) dependencies between the parameters to be found. For the problem of gen-
erating crossword masks, fields close to each other are extremely dependent while fields
more than four cells apart hardly have any (direct) influence on each other at all, as can be
observed in 3.11. In fact, whether a specific field assignment is beneficial or not in most
cases solely depends on the assignments to the surrounding fields.

field type 2:

letter field:

(1) (2) (3)

0%

100%

Figure 3.11.: For this graphic, 50,000 valid masks were created. (1) visualizes for each grid cell the
percentage of masks having a letter field or definition field of type 1 respectively at that position.
(2) shows the result when only counting masks that have a definition field of type 1 (i.e. a straight
arrow to the right) at the position marked with a cross. (3) shows the difference between (1) and
(2). It can be observed that in (1) most fields (apart from those close to a border) are equally likely
to be assigned a certain field type. When fixing one field however, this changes significantly for the
cells close by, whereas cells more than four fields apart are hardly influenced at all - as can be seen
in (2) and (3)

Following this consideration it becomes obvious that when fitting two halves of two
different masks together, some of the field assignments close to the splitting line will loose
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3.5. Crossover

a lot of their value, as they were only a good choice in combination with the - now replaced
- other half of the original mask. It is therefore not surprising, that the shorter the splitting
line is, the better the resulting masks are. As a very short splitting line can obviously be
achieved by, for example, just cutting off one of the corner fields, an additional criterion
- for example that each half has to contain at least 30% of the overall non-cut-out fields
- is required. For simplicity reasons only lines through the central point are allowed2.
Pseudocode of the resulting crossover operator can be found in appendix A.

Mask:

Average Result: 30,914 37,399 46,623 74,411 129,024 227,873

Success: 24 2 0 0 0 0

Figure 3.12.: Different crossover masks, tried on every possible combination of 500 masks (i.e.
249,500 tries). Average score of original masks: 17,207. success denotes how often the resulting
mask was better than both respective parents.

The result of such a crossover operator however is fairly discouraging: especially for big
masks, the result of crossing two completely different masks is very unlikely to actually
be better than the parents, as can be seen in 3.12. This is due to the strong dependencies
between adjacent fields and the consequence that new validity violations produced along
the crossover line outweighs any positive effects a crossover might have. Two additional
things have to be added:

• The results presented in 3.12 were obtained using masks that already are “fairly
good”, meaning they contain at most two validity violations. When using less evolved
masks, the results are similar but less extreme: some newly produced validity vio-
lations have far more impact on the fitness value if the original masks only contain
very few violations. However as a mask only containing very few to no validity vi-
olations at all is achieved quite quickly, the main challenge lies in optimizing such a
mask with respect to the quality criteria - justifying these considerations.

• The more alike the two parents are, the better the results of the crossover operator
will be - simply due to the fact that less dependencies are destroyed. This leads to
the following consequence: If the population has a high diversity - which usually is
desired - the crossover operator is too destructive to be used efficiently. If the popu-
lation however has a very low diversity, the crossover operator is far less destructive,
but simultaneously the main advantage of a genetic algorithm - the ability to explore
the search space efficiently and exhaustively - is lost (see chapter 1.5, “Diversity vs.
Convergence”).

2Sampeling splitting lines with respect to the proposed 30%-criterion is not trivial, as aribitary cut-out field
positions have to be taken into account. It however could be done - apart from a simple try & error approach
- in adequate, constant time (using appropriate pre-computation).
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3. Applying a Genetic Algorithm

Figure 3.13.: An example for crossover. While both parent masks meet all validity constraints and
achieve a total penalty score of 5,920 and 5,490 respectively, the mask resulting from a crossover
along the dashed line contains seven violations and hence has a far worse total penalty of 15,925.
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3.6. Results

Having defined the fitness function as well as the mutation and crossover operator, there
are still some parameters left that can be adjusted:

• Selection Function: Throughout this work the so-called tournament-selection pre-
sented in the first chapter was used. This leaves the parameter α ∈ N (determining
the tournament size) to adjust the selection pressure. Default value: α = 4.

• Population Size =: n ∈ N denoting the number of masks in each generation. Default
value: n = 200.

• Crossover Rate =: c ∈ [0, 1] denoting the fraction of the new generation to be cre-
ated by crossover. It was decided to use an elitist selection, meaning that the best
mask from the parent generation is always copied to the next generation without
being changed. The fraction of the new generation created by mutation therefore is
approximately 1− c. Default value: c = 0.5.

The following plots document the results achieved with different settings for these three
parameters. For each set of parameters, thirty evolutions were run, generating a 20 × 20
mask without any cut-out fields. The continuous line depicts the average over all thirty
runs, the boxes denote the average plus / minus the estimated standard deviation. The
best and worst results are depicted by the whiskers of the box plots. Pseudocode for the
genetic algorithm, as well as for a simple hillclimber, can be found in appendix A.

Note again that due to the design of the fitness function, the actual rating achievable is
highly dependent on the mask dimensions and the positions of cut-out fields. In particular
a mask with rating 0 is not achievable: in fact the overall best 20× 20 mask found still had
a rating of 8,047.
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Figure 3.14.: Results for different values of n (population size). α = 4, c = 0.5.
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Figure 3.15.: Results for different values of α (tournament size). n = 200, c = 0.5.
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Figure 3.16.: Results for different values of c (fraction of new generation created by crossover).
n = 200, α = 4.
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Figure 3.17.: Result of a simple hillclimber compared to the evolution with default settings (n = 200,
α = 4, c = 0.5).
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Figure 3.18.: Results for four exemplary single runs with default settings (n = 200, α = 4, c = 0.5).
It is to note that rather than decreasing continuously, relatively few but significant improvements
are found which, when averaged, result in the smooth graphs found in the plots before. This is
due to the discrete nature and the high dimensionality of the problem, leading to a huge number
of possible mutations with only a fraction being beneficial.
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3.7. Discussion

From these plots it can be concluded that - for this specific problem - the advantages an
evolutionary algorithm usually has compared to a simple hillclimber can not be exploited:
A simple hillclimber performs slightly better than a complete evolutionary algorithm.

Further examination shows that this is mainly due to two points:

• Extremely quick Convergence: It turns out that even for very low selection pres-
sure (α = 2), the diversity among the population decreases very quickly. This can be
observed in the below plot, showing the average hamming distance (i.e. number of
differently assigned fields) between all masks within each generation. Even omitting
the elitist selection, i.e. not directly copying the best individual, leads to no signifi-
cant difference. In fact it is questionable whether a significantly higher diversity was
beneficial at all - as the crossover operator would, as discussed in the previous chap-
ter, hardly be able to exploit this. Hence no further actions aimed at increasing the
diversity were taken.
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Figure 3.19.: Average Hamming distance within each generation for a 20 × 20 mask and n = 200,
c = 0.5 and α = 2 or 4 respectively; for the first 500,000 evaluations (corresponding to 2,500 gen-
erations). Note that the average actually drops below one, meaning that the same mask (probably
the currently best one) occurs multiple times within the population, as crossover “rediscovers” the
original mask by patching together the unchanged halves of two mutation offsprings.

This development is responsible for the observable result that increasing α above
4 has no visible effect: As especially the better individuals are extremely similar or
even equal, it does not make a significant difference whether the best or the tenth best
individual is selected. It also accounts for the fact that higher values for n do not lead
to (significantly) better results in the long run: the increased capability to explore the
search space simply is not exploited. It does however take longer to converge, as in
the beginning a lot of evaluations are wasted on masks that get thrown out anyway.
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3. Applying a Genetic Algorithm

• Low Mutation Success Rate: Due to the discrete nature of the problem and very
high dimension, there is a huge number of possible mutations. For a 20 × 20 mask
for example, there are approximately two billions of possible mutations of size three.
When only considering mutations where the changed fields are at most six fields
apart (which is reasonable for the centralized mutation used), there are still in the
order of 25 million possibilities left. In the later part of the evolution, the vast major-
ity of these mutations result in some new validity violation or a significantly worse
quality rating, making the resulting mask worse than the original mask - although
there still are some improvements possible. This can indirectly be observed when
looking at the fitness plot for a single evolution (see figure 3.18): The fitness value of
the best mask stays constant for - in the later part - thousands of generations, until
at some point an improvement is discovered, leading to a significantly better value.
The below graph shows the empiric mutation success rate for a hillclimber run on a
20× 20 mask. Each cross represents a successful mutation.

In this scenario, ”‘wasting”’ mutations on suboptimal masks might not be that bene-
ficial. Still it turns out that crossover is required for extracting improvements found
by mutation - this is necessary, as the mask on which an improvement was found
might have had some flaw compared to the previously best mask itself (for example
resulting from some unsuccessful mutation). Crossover then is able to extract the
found improvement and “repair” this flaw. Hence, the evolution performs signifi-
cantly worse if no crossover is used at all (c = 0, see figure 3.16).

With the current implementation, about eight thousand 20 × 20 masks can be evalu-
ated per second on an average home PC. A run over three million evaluation hence takes
approximately six to seven minutes - which is practically feasible
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Figure 3.20.: Mutation success rate and the corresponding rating of an exemplary hillclimber run.
Note the logarithmic scale in the below plot.
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4. Memetic Algorithm Approach

4.1. Basic Idea

The results discussed in the previous chapter - a simple hillclimber exceeding a complete
evolutionary algorithm - are primarily due to the extremely strong local dependencies, and
the resulting poor performance of the crossover operator. Apart from the problems arising
along the splitting line however, a crossover can in fact be very beneficial, as globally
different areas of the mask hardly influence each other’s value at all.

It turns out that in most cases, the validity violations (and of course assignments con-
tributing to a bad quality rating) created by a crossover along the splitting line can easily be
corrected by applying a hillclimber to the resulting child in order to “repair” it. Consider
the mask resulting from the exemplary crossover in chapter 3.5: only four independent
mutations, each of size one (and hence relatively likely to be discovered), are required to
repair the mask - making the result significantly better then both parents.

Figure 4.1.: The original crossover result depicted on the left contains several validity violations,
and has a rating of 15,925. With only four independent changes however, the mask can be “re-
paired”, such that it achieves a rating of 4,890 - better than both parents (which had a rating of
5,920 and 5,490, see figure 3.13).

This gives rise to the concept of introducing a “second” evolutionary algorithm on a
higher level: this evolutionary algorithm only uses crossover, but a hillclimber is applied
after each crossover to repair the resulting child mask. This concept is also known as
Memetic Algorithm [?]: Basically exploration and exploitation are separated: While ex-
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4. Memetic Algorithm Approach

ploration is mainly done by the “outer” evolutionary algorithm using only crossover, the
hillclimber process is responsible for exploitation - which is what a hillclimber is best at.

4.2. Implementation

This approach however can still be refined: The potential of a mask resulting from a
crossover can be estimated before applying the hillclimber. This is done by using the lo-
cal rating of both parents: Let the potential rating of a crossover result be defined as the
sum of the local ratings of both halves. This value only accounts for the quality of both halves
on their own, without taking the problematics arising along the splitting line into account
- assuming that these are “repaired” by the hillclimber, this is a reasonable choice1.

Using this value, a preselection of crossover results based on their potential rating can
be determined, and only this preselection is repaired with a hillclimber, as the hillclimber
is the - by several orders of magnitude - computationally most expensive step.

Still there are some masks, which turn out to be difficult to repair (due to newly created
local minima), or which - even after being repaired - just are not that good and hence are
not worth to be exploited fully. These are filtered out by first applying a hillclimber with a
relatively weak break condition to all masks, then selecting only a subset having the best
rating, and then continuing the hillclimbing process only on this subset. At this point it
also is sensible to try to keep the diversity within the population as high as possible, as
the genetic algorithm basically is only responsible for exploration anyway. In figure 4.2,
the basic schematics of the resulting algorithm are depicted; additionally it can be found
in appendix A.

1As one could expect, this value still is significantly lower than the actual rating of a mask after “repairing”
it.
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4.2. Implementation

1: Cross every pair of

masks, try multiple

crossover lines

2: Select the 2n best

masks with respect to

potential rating

3: Apply hillclimber

with weak break

condition

4: Remove masks that

are too similar to each

other

5: Select the at most n

best masks with respect

to actual rating

6: Apply hillclimber

with strong break

condition

0: Create initial masks

using a hillclimber

Figure 4.2.: General layout of the algorithm. n stands for the population size. Note that two se-
lection steps are present, both of which are completely deterministic - i.e. always the best masks
are selected. The - by several orders of magnitude - most expensive steps are the two hillclimbing
processes applied to all masks, i.e. step three and six.
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4. Memetic Algorithm Approach

4.3. Results

In this section, the results obtained when using the algorithm described above are pre-
sented. Note that for the following plots only eight runs were done - each run however
was allowed twenty million evaluations (instead of only three million, as in the previous
chapter). The first plot directly compares the performance of a simple hillclimber with the
performance of the memetic approach. Afterwards different values for the following four
parameters are tested:

• δ := maximal fraction of identically assigned fields, for two masks to be considered
as “too similar”. Default value: δ = 0.1

• n := population size. Default value: n = 15

• bw := weak break condition: Break after bw unsuccessful mutations in a row. Default
value: bw = 2, 000

• bs := strong break condition: Break after bs unsuccessful mutations in a row. Default
value: bs = 10, 000
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Figure 4.3.: Memetic approach vs. basic hillclimber.
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Figure 4.4.: Different values for δ: Some optimization might be possible here.
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Figure 4.5.: Different values for n: These results are pretty much what one would expect: the bigger
the population, the more exploration is involved - leading to slower convergence but (up to a
certain point) overall better results
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Figure 4.6.: Different values for bw
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Figure 4.7.: Different values for bs: Again, by adjusting bw and bs, better overall results can be
achieved, but in turn more evaluations are required.
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5. Practical Results

In the preceding chapters, different algorithms and parameters were judged based solely
on the fitness values of the masks created. This makes sense, as the fitness value is the
only information about a mask available for the algorithm - hence the better the fitness of
the masks created, the better the algorithm. Whether the fitness function used really rep-
resents the desired characteristics for a good crossword mask is irrelevant for this process,
as the performance of an algorithm can be assumed to be independent of the exact fitness
function used1.

From a practical point of view however, the resulting mask itself is relevant - and not
some fitness value. The link between these two points of view is the fitness function.
Judging a fitness function however is only possible by analyzing the resulting masks and
- in order to improve it - one needs to adjust the different penalty values and identify new
features to be penalized (or maybe rewarded). For this thesis, a professional opinion from
Axel Ruepp R ätselservice 2 was solicited:

“[The masks] are surprisingly good, almost as good as handmade. Only very
few adjustments are necessary to make them fit for being used in practice.”

Some exemplary resulting masks can be found in appendix B: Based on manually cre-
ated masks (again, by Axel Ruepp R ätselservice ), masks with the same layout were
generated by the memetic algorithm approach. Note that a slightly modified fitness func-
tion, taking some more complex (and technical) features into account was used.

An interesting point to add is that, regardless of which fitness-function settings are used
(i.e. how the different features are penalized), the automatically generated masks are - by
a large margin - always better than the manually created “originals” (with respect to the
fitness function used). This strongly suggests that, apart from optimizing the running time
of the algorithm, significant improvement is only possible by finding some more accurate
fitness function.

1At least for roughly similar fitness functions, this is a reasonable assumption.
2http://www.raetselservice.de
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6. Further Work

As discussed in the previous chapter, probably no significant improvements concerning
the quality of masks generated with respect to a given fitness function is possible. No matter
how the fitness function is parameterized, the memetic approach already generates masks
which are - with respect to that specific fitness function - better than manually designed
masks. Still some optimization with respect to running time and convergence speed is pos-
sible: For one thing the memetic approach itself has not been examined very extensively,
for several design choices different solutions might prove to perform better. For another
thing, the mask evaluation process can be sped up significantly: Currently the whole mask
is re-evaluated after each mutation. However especially in the context of a simple hill-
climber where the same mask is mutated thousands of times until finally an improvement
is found, it should be possible to only calculate the impact of a single mutation without
re-evaluating the whole mask1. In particular, this would lead to an evaluation running in
O(1) instead of - as it is the case with the current implementation - O(number of fields).

The fitness function itself however is a different matter: the main problem is that ulti-
mately the only way to directly compare two fitness functions is to have an expert judge
the resulting masks. At least the features of a mask to be rated - for example to judge a
cluster based on the number of definition fields it contains - have to be identified manually,
and there obviously are many more possibilities than only the basic ones presented here.
How exactly a specific feature then impacts the rating of a mask - for example how many
penalty points to give for which cluster size, and how the different features are weighted
- could then be determined by some more interesting methods: For example using a set
of manually created “prototype masks” one could try to automatically adjust these fitness
function parameters to give better fitness values for the prototypes, while simultaneously
giving worse fitness values for generated masks - hence iteratively leading to masks more
and more similar to the given prototypes (again, only with respect to the features rated at
all).

1This however requires quite a complex logic, as even a single change can have quite a lot of consequences -
leading to very technical code of hardly any scientific interest. In particular, it might be necessary to build
some more complex representation of the parent mask, allowing to quickly have access to the affected
words, clusters and so on - but as mentioned, in the context of thousands of mutations being performed
on the same parent mask, this probably pays off.
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A. Code

Algorithm 1: Mutation

Input: Parent mask, Parameter mutationSize

(x, y)← getRandomField()1

result← mask.copy()2

result[x, y]← getRandomFieldType()3

for i← 2 to mutationSize do4

repeat5

(x′, y′)← sample from N ((x, y), 3 · I2×2)6

until (x′, y′) is a valid coordinate and no cut-out field7

result[x′, y′]← getRandomFieldType(x′, y′)8

end9

return result10

Note that the method getRandomField() includes the guided mutation described in
chapter 3.4, while getRandomFieldType(x′, y′) respects the limitations discussed in chap-
ter 3.3, as well as the adjusted field type probabilities presented in chapter 3.4. Addition-
ally - as long as at least two different field types are allowed at that position - a field type
different from the current type is returned.
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A. Code

Algorithm 2: Crossover

Input: Parents parent1, parent2

(gx, gy)← central point with respect to only non-cut-out fields1

β ← random angle from [0, 2π)2

foreach field (i, j) do3

if (sin β, cos β)(i − gx, j − gy)
T ≤ 0 then4

result[i, j]← parent1[i, j]5

else6

result[i, j]← parent2[i, j]7

end8

end9

return result10
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Algorithm 3: Basic Hillclimber

Input: Initial Mask mask, Break Condition limit

evaluate(mask)1

noChange← 02

repeat3

copy ← mutate(mask)4

evaluate(copy)5

if copy.rating < mask.rating then6

mask ← copy7

noChange← 08

else9

noChange← noChange+ 110

end11

until noChange ≥ limit12

return mask13
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A. Code

Algorithm 4: Basic Genetic Algorithm

Input: Parameter n, α, c

for i← 1 to n do1

population[i]← getRandomMask()2

evaluate(population[i])3

end4

sort population by descending rating5

repeat6

newPop[1]← population[1]7

for i← 2 to n do8

if i ≤ cn then9

newPop[i]← cross(select(population, α), select(population, α))10

else11

newPop[i]← mutate(select(population, α))12

end13

evaluate(newPop[i])14

end15

sort population by descending rating16

until break condition is satisfied17

return population[1]18

Procedure: select(population, α)19

result← population.selectRandom()20

for i← 2 to α do21

m← population.selectRandom()22

if m.rating > result.rating then23

result← m24

end25

end26

return result27

end28
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Algorithm 5: Memetic Approach

Input: Parameter n,bw,bs,δ

/ * Step 0: Initialization * /1

for i← 1 to n do2

population[i]← hillclimbe(getRandomMask(), bs)3

end4

repeat5

/ * Step 1: Crossover(s) * /6

forall {i, j} in
�
[n]
2

�
do7

m← cross(population[i], population[j])8

for k ← 2 to 50 do9

try ← cross(population[i], population[j])10

if try.potentialRating > m.potentialRating then m← try11

end12

newPop.add(m)13

end14

/ * Step 2: First Selection by potential Rating * /15

remove all but best 2n (with respect to potential Rating) masks from newPop16

/ * Step 3: First Hillclimber * /17

for i← 1 to 2n do newPop[i]← hillclimbe(newPop[i], bw)18

/ * Step 4: Delete masks that are too similar * /19

sort newPop (by descending actual rating of masks)20

newPop[∗].markedForDeletion ← false21

for i← 1 to 2n do22

if newPop[i].markedForDeletion then continue23

for j ← i+ 1 to 2n do24

if newPop[i] and newPop[j] are too similair then25

newPop[j].markedForDeletion ← true26

end27

end28

end29

/ * Step 5: Second Selection by actual Rating * /30

population← all masks from newPop not marked for deletion31

if population.Count ≥ n then keep only best n masks in population32

else n← population.Count33

/ * Yes, the population size is actually reduced, if34

there are not enough different masks left * /35

/ * Step 6: Second Hillclimber * /36

for i← 1 to n do population[i]← hillclimbe(population[i], bs)37

until break Condition is satisfied38

return best mask in population39
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B. Sample Masks

Figure B.1.: Manually created original mask (total penalty 10,458)

Figure B.2.: Automatically generated mask (total penalty 7,996)

Coverage: Perfectly (5) Once, enclosed (2) Once, not enclosed (3)

Manually created 137 42 0

Generated mask 143 39 0

Word lengths: 2 3 4 5 6 7 8 9 10 11 12 13 14

Manually created: 0 17 14 13 10 6 2 0 0 0 1 0 1

Generated mask: 0 6 12 17 15 6 4 0 1 0 0 0 0

Table B.1.: Some basic statistics for the above masks
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Figure B.3.: Manually created original mask (total penalty 37,322)

Figure B.4.: Automatically generated mask (total penalty 26,675)

Coverage: Perfectly (5) Once, enclosed (2) Once, not enclosed (3)

Manually created: 354 102 0

Generated mask: 348 114 0

Word lengths: 2 3 4 5 6 7 8 9 10 11 12 13 14

Manually created: 0 51 42 26 21 15 10 3 1 1 0 0 0

Generated mask: 0 34 36 43 27 10 9 5 0 0 0 0 0

Table B.2.: Some basic statistics for the above masks
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B. Sample Masks

Figure B.5.: Manually created original mask (total penalty 29,824)

Figure B.6.: Automatically generated mask (total penalty 21,833)

Coverage: Perfectly (5) Once, enclosed (2) Once, not enclosed (3)

Manually created: 330 93 0

Generated mask: 326 101 0

Word lengths: 2 3 4 5 6 7 8 9 10 11 12 13 14

Manually created: 3 20 64 16 22 8 5 11 0 0 2 0 0

Generated mask: 3 19 26 47 27 14 9 1 1 0 0 0 0

Table B.3.: Some basic statistics for the above masks
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Figure B.7.: Manually created original mask (total penalty 47,819)

Figure B.8.: Automatically generated mask (total penalty 44,657)

Coverage: Perfectly (5) Once, enclosed (2) Once, not enclosed (3)

Manually created: 672 203 0

Generated mask: 699 172 0

Word lengths: 2 3 4 5 6 7 8 9 10 11 12 13 14

Manually created: 0 26 74 70 45 31 27 10 3 0 0 0 0

Generated mask: 0 52 36 68 63 43 12 8 5 3 0 0 0

Table B.4.: Some basic statistics for the above masks
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Figure B.9.: And this is what happens when large clusters are rewarded instead of penalized (i.e.
the sign gets switched accidentally).
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