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Abstract

This thesis explores direct formulations for real-time, incremental Structure from
Motion / SLAM. Direct methods — in contrast to indirect methods — estimate ge-
ometry directly from the images, i.e., the raw sensor measurements, without inter-
mediate abstraction, for instance in the form of keypoint matches. This has the
major advantage that it does not require points to be recognizable on their own,
thus allowing to use all information from the images including corners, edges, and
weakly textured or repetitive image regions. Furthermore, is allows to employ a
more finely grained (pixel wise) geometry representation.

The first part of the thesis proposes a novel large-scale direct monocular SLAM
system (LSD-SLAM). LSD-SLAM employs a semi-dense formulation: Geometry
is estimated in the form of smooth, semi-dense depth maps, which are obtained by
filtering over many small-baseline stereo comparisons. In turn, the camera is tracked
using direct image alignment, optimizing the relative pose of two frames directly on
the raw images. Subsequent integration into a scale-drift aware pose-graph allows to
perform large-scale mapping, including loop-closure detection and correction as well
as relocalization. LSD-SLAM runs in real-time on a CPU and even on a modern
smart phone. Furthermore, it is extended to other sensor modalities like stereo and
omnidirectional cameras.

In the second part of the thesis, a novel direct and sparse formulation for monoc-
ular visual odometry (DSO) is proposed. It combines a direct model and error
formulation with a sparse geometry representation, i.e., does not incorporate or
enforce a geometry prior such as smoothness. This allows to jointly optimize all
involved parameters, effectively performing the direct equivalent to full bundle ad-
justment. At the same time, as direct method, DSO employs a pixel-wise inverse
depth representation and can use all image regions instead of only corners. Exten-
sive experiments, comprising thousands of run sequences, show that the proposed
direct and sparse formulation substantially outperforms the indirect approach, both
in terms of accuracy as well as robustness.






Zusammenfassung

Diese Doktorarbeit untersucht direkte Ansétze fiir Structure from Motion und vi-
suelles SLAM (Simultaneous Localization and Mapping). Direkte Methoden — im
Gegensatz zum traditionellen indirekten Ansatz — berechnen 3D Geometrie und
Kamerabewegung direkt auf den von der Kamera aufgenommenen Bildern, ohne
diese zu diskreten Landmarken zu abstrahieren. Dies erlaubt es, alle Bildinforma-
tionen zu verwerten — insbesondere auch Kanten, leichte Schattierungen auf inten-
sitatshomogenen Fléchen, sowie repetitive Bildregionen. Desweiteren ermoglicht es
der direkte Ansatz, Geometrie auf natiirliche Weise in als prézise inverse Tiefenkarte
Zu reprasentieren.

Der erste Teil dieser Arbeit entwickelt eine direkte, semidichte SLAM Metho-
de zur Rekonstruktion weitlaufiger Gebiete (“Large-scale direct monocular SLAM”,
LSD-SLAM). LSD-SLAM représentiert Geometrie in der Form von semidichten Tie-
fenkarten unter Benutzung eines smoothness-Priors. Tiefenwerte werden durch die
effiziente, probabilistische Fusion grofler Mengen von Stereovergleichen berechnet
(Filterung), wihrend die Kamerabewegung mittels direct image alignment, also di-
rekt anhand der Bilder berechnet wird. Die daraus resultierenden relativen Posi-
tionsinformationen zwischen Paaren von Bildern werden in einem zweiten Schritt
in Form eines skalierungs-adaptiven Pose-Graphs gemeinsam optimiert, um global
konsistente Positionen fiir jedes Kamerabild zu erhalten. Desweiteren integriert LSD-
SLAM eine Komponente zur Kamera-Relokalisierung, sowie zum Erkennen grofler
Schleifenschliisse. LSD-SLAM wurde als open-source code veroffentlicht, und ope-
riert in Echtzeit auf der CPU, ohne eine GPGPU zu benétigen. Im weiteren Verlauf
der Arbeit wird LSD-SLAM auf andere Sensormodalitidten erweitert, insbesondere
wird LSD-SLAM fiir Stereokameras sowie omnidirektionale Kameras angepasst.

Der zweite Teil dieser Arbeit formuliert eine neuartige direkte und sparse Formu-
lierung des Strukture from Motion Problems in Form einer neu entwickelten Methode
fir Visuelle Odometrie (DSO). DSO kombiniert den direkten Ansatz — insbeson-
dere das dahinterstehende probabilistische Modell — mit einer sparsen Geometrie-
Repréasentation. Insbesondere bedeutet dies, das DSO, im Gegensatz zu anderen
direkten Ansétzen, keine Glattheitsannahme macht, sondern einzelne Punkte als
unabhédngig betrachtet (gegeben die Kamerapositionen). Dies erlaubt es, alle Modell-
parameter gemeinsam zu optimieren, und entspricht damit dem direkten Aquivalent
zu (indirektem) Biindelausgleich. Da DSO einen direkten Ansatz verfolgt, kann es
jedoch weiterhin alle Bildregionen, und damit alle Bildinformationen, benutzen —
und ist nicht, wie der klassische indirekte Ansatz, auf eindeutig wiedererkennba-



re Landmarken beschrdnkt. Anhand von ausgiebigen Experimenten wird demons-
triert, dass der vorgeschlagene direkte und sparse Ansatz deutlich héhere Genauig-
keit ermoglicht, und gleichzeitig wesentlich robuster ist als der klassische indirekte
Ansatz.

vi
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Chapter

Introduction

We humans perceive the world with our eyes. While we possess and use other senses
such as touch and hearing, the sheer portion of the human brain devoted to visual
processing — about 30%, compared to 8% for touch and 3% for hearing — demon-
strates both the importance as well as the complexity of the ability to understand
the 3D world around us from 2D projections observed by our eyes. While vision
includes a large number of tasks including recognizing different people and objects,
a fundamental component is the ability to perceive the 3D structure of the world,
allowing us to explore unknown environments, drive a car along the road, or interact
with physical objects in our presence.

As artificial devices — autonomous cars, quadrocopters, full-sized robots or even
virtual and augmented reality systems — start to interact with, or adapt to the
3D world around us, they need the ability to perceive, reconstruct and ultimately
understand it in a similar manner: A car that drives itself needs to know where
it is, and it needs to recognize and avoid obstacles, both dynamic and static. To
convincingly display a virtual object standing on a real-world table, both the pose
of the observer, as well as the pose and shape of the table need to be known.

Researchers in computer vision, mathematics and robotics have thus spent
decades on the task of reconstructing the 3D world — geometry and camera mo-
tion — from 2D images. It is commonly called Simultaneous Localization and Map-
ping (SLAM) or Structure and Motion (SaM).

1.1 A Brief History

In this section we give a brief history of the origins of today’s SLAM / SaM formula-
tions, summarizing important milestones and paradigm-shifts from the last decades.
A more comprehensive analysis of the current state of the art will be given in Section
L4

Approaches for computing 3D structure from 2D images date back more than
100 years, long before the advent of digital photography or even computers. Very
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early work includes that of Kruppa in 1913 [72], where he formulated an analytic
approach to compute the relative pose of two images from 5 manually labelled
point-correspondences. In the following decades, both the number of points and
the number of images increased, and practical methods for solving the resulting
mathematical systems were developed. The general term “Bundle Adjustment” —
jointly optimizing a “Bundle” of rays — appears as early as 1976 in the work of
D. C. Brown [20], still operating on manually labelled point correspondences in
analogue images.

With the advent of digital imaging, the initial step of manually selecting and
matching suitable points (landmarks) was replaced by automatic feature detection.
First approaches to find suitable points — keypoints — include that of Forstner and
Giilch [42] in 1987 and that of Harris and Stephens [54] in 1988. In the following
years, other approaches such as FAST corners [97], which are significantly faster to
compute, have been developed. Initially, selected keypoints were tracked by mini-
mizing the photometric error between small patches around them. This is commonly
known as the Kanade-Lucas-Tomasi feature tracker (KLT), which was first proposed
in 1991 [117]. Only later, the local optimization approach was replaced by a global
search in an abstracted descriptor space such as SIFT in 1999 [80], SURF in 2006
[18] or ORB in 2011 [98]. This effectively allows to solve the matching problem glob-
ally by approximating it with a nearest-neighbour search, replacing gradient-based
local optimization.

After detecting and matching keypoints as a first step, indirect methods then
proceed by estimating 3D geometry — camera motion and keypoint positions —
from the found 2D correspondences. First real-time capable, incremental methods
were based on Kalman filtering, i.e., accumulating information about the world
as joint Gaussian distribution on all involved parameters. FEarly examples for
such filtering-based algorithms include the work of Jin et al. [59], and the work
of Davison et al. [31]. With PTAM (Parallel Tracking and Mapping), Klein et
al. showed that real-time SLAM can also be formulated by representing the world
in the form of a sparse, bipartite graph of keypoints and keyframes, which is
optimized in the background using non-linear optimization (Bundle Adjustment).

Simultaneously to the appearance of keypoint detectors, direct and semi-direct
formulations for structure and motion have been proposed. In contrast to the indi-
rect approach (which separates correspondence estimation from geometric optimiza-
tion), direct methods optimize 3D geometry on the raw intensity images without
intermediate abstraction. An early example for direct and dense geometry estima-
tion is the work of Matthies et al. in 1988 [81], which proposes a method to estimate
dense depth from a (calibrated) sequence of images, using pixel-wise filtering inter-
leaved with spatial smoothing. The work of Hanna in 1991 [53] proposes a direct
formulation for estimating dense depth as well as the camera motion from a monocu-

4
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lar image sequence, minimizing a photometric error. A sparse and direct monocular
SLAM system capable of running in real-time was presented by Jin et al. in 2002
[58], which optimizes sparse patch positions & normals as well as camera poses for
a sequence of images, using a photometric error formulation.

1.2 Classification of SLAM Methods

This section defines three ways to classify visual SLAM / SaM methods: direct
vs. indirect, dense vs. sparse, and optimization-based vs. filtering-based. These clas-
sifications are intentionally kept independent of the used sensor modalities. In fact
they apply in the context of different sensor combinations and modalities, including
monocular, stereo, visual-inertial, and RGB-D.

1.2.1 Direct vs. Indirect

Underlying almost all formulations is a probabilistic model that takes noisy mea-
surements Y as input and computes an estimator X for the unknown, hidden model
parameters (3D world model & camera motion). Typically a Maximum Likelihood
approach is used, which finds the model parameters that maximize the probability
of obtaining the actual measurements, i.e.,

X* := argmax P(Y|X). (1.1)
X

Indirect methods then proceed in two steps: First, the raw sensor measurements
are pre-processed to generate an intermediate representation, solving part of the
overall problem, such as establishing correspondences. Second, the computed
intermediate values are interpreted as noisy measurements Y in a probabilistic
model to estimate geometry and camera motion. Note that the first step is typically
approached by extracting and matching a sparse set of keypoints — however other op-
tions exist, like establishing correspondences in the form of dense, regularized optical
flow. This also includes methods that extract and match parametric representa-
tions of other geometric primitives than only points, such as line- or curve-segments.

Direct methods skip the pre-processing step and directly use the actual sensor
values — light received from a certain direction over a certain time period — as
measurements Y in a probabilistic model.

In the case of passive vision, the direct approach thus optimizes a photometric
error, since the sensor provides photometric measurements. Indirect methods on
the other hand optimize a geometric error, since the pre-computed values — point-
positions or flow-vectors — are geometric quantities. Note that for other sensor
modalities like depth cameras or laser scanners (which directly measure geometric

5
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Reprojection
error
| minimization:

Keypoint
extraction:

estimate
geometry from
point matches.

.| abstract images
@Y to keypoint ob-
servations.

Photometric error minimization:

estimate geometry directly from the images.

Figure 1.1: Direct vs. indirect. The indirect approach (top) splits the overall task —
estimating geometry and camera motion from images — into two sequential steps, keypoint
detection and matching, and geometric optimization on the computed point correspon-
dences. The direct approach (bottom) in turn skips this intermediate representation, and
directly optimizes geometry and camera motion on the raw intensity images.

quantities) direct formulations may also optimize a geometric error. Figure
conceptually visualizes the difference between the direct and the indirect approach.

1.2.2 Dense vs. Sparse

Sparse methods use and reconstruct only a selected set of independent points (tra-
ditionally corners), whereas dense methods attempt to use and reconstruct all pixels
in the 2D image domain. Intermediate approaches (semi-dense) refrain from recon-
structing the complete surface, but still aim at using and reconstructing a (largely
connected & well-constrained) subset of it.

Apart from the extent of the used image region however, a more fundamental —
and consequential — difference lies in the addition of a geometry prior. In the sparse
formulation, there is no notion of neighborhood, and geometry parameters (keypoint
positions) are conditionally independent given the camera poses & intrinsicsﬂ Dense
(or semi-dense) approaches on the other hand exploit the connectedness of the used
image region to formulate a geometry prior, typically favoring smoothness. In fact,
such a prior is necessarily required to make a dense world model observable from
passive vision alone. In general, this prior is formulated directly in the form of an
additional log-likelihood energy term. Figure [1.2| shows two inverse depth maps, a
semi-dense one created by LSD-SLAM, and a sparse one created by DSO.

INote that even though early filtering-based methods such as kept track of point-point-
correlations, these originated from marginalized camera poses, not from the model itself.
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Figure 1.2: Dense vs. sparse. Left: Semi-dense, spatially regularized depth map created
by LSD-SLAM. The regularizer assumes neighboring pixels to have similar depth, thereby
correlating them in the model. Middle: Sparse inverse depth map created by DSO. No
smoothness prior is included in the model, thus all points are conditionally independent
given the camera poses. Right: Original image.

1.2.3 Filtering vs. Optimization

The fundamental difference between filtering-based and optimization-based ap-
proaches lies in the way the internal state (i.e., the world model) is represented.

Filtering-based methods estimate and continuously update a joint probability
distribution over all relevant parameters. New measurements are used to update
this distribution (reducing uncertainty), while time progression adds new parame-
ters with large initial uncertainty or increases the uncertainty of existing ones. This
approach is commonly known as Kalman filtering. This representation allows to eas-
ily marginalize old state variables, thus filtering-based methods typically marginalize
old states, and only keep the current camera pose in the state vector.

Recent filtering-based methods such as the multi-state constrained Kalman filter
(MSCKF) include a sliding window of past camera poses and intrinsic calibration pa-
rameters, but do not include geometry parameters (point positions). Instead, these
are only added once they leave the field of view, and then immediately marginalized.

Optimization-based methods on the other hand keep information in the form of
a non-linear energy function, which is continuously optimized in the background.
To facilitate this, they aggressively drop available information and only keep a
small subset of frames (keyframes). This has the advantage of lower computational
complexity in terms of the number of points (O(m? + m?n) instead of (’)((m + n)g)
for filtering, where m is the number of frames and n the number of points). Further,
it allows linearizations to be re-evaluated after better estimates are available.
On the other hand, it reduces the number of actual observations that can be
incorporated into the system.

In [110], Strasdat et al. draw the conclusion that filtering has a better accuracy

7
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live recorded on a Samsung Galaxy Note 3

Figure 1.3: Augmented Reality. Left: external view of an augmented reality application
running on a smartphone. Right: screenshot recorded on the phone, with a virtual car
driving over a real-world surface. The system is discussed in Chapter [5, was developed as
joint work with Thomas Schops, and is published in

per unit of computation trade-off for small systems, (i.e., towards the low end of
available compute budged), whereas optimization-based methods achieve a better
trade-off for larger problems, using significantly more points.

1.3 Applications for SLAM

Real-time visual SLAM and visual odometry have many practical applications,
which are becoming increasingly important for current technological developments.
The most prominent areas are

Visual and Augmented Reality (VR / AR). The camera pose and the geom-
etry of the scene are required to correctly render virtual objects into the image, and
allow them to interact (e.g., collide with or disappear behind) real-world objects.
At the same time, wearable devices — such as a headsets or smart phones — impose
severe restrictions on the cost, size, weight, and power consumption of the used
sensors. This leads to passive vision becoming an important sensor modality — both
in a monocular or stereo set-up, and typically combined with an IMU. Figure [1.3
shows an example of an AR system developed as part of this thesis running on a
modern smart phone, it will be presented in Chapter

Robotics. Examples include autonomous quadrocopters, driver-less cars, and
robot vacuum cleaners. Visual SLAM is used to estimate the robot’s position with
respect to the environment and to navigate without colliding with other objects.
While in some cases other sensor modalities (such as laser scanners or RGB-D cam-
eras) can be used, using passive vision is a good — and sometimes the only — option
for resource-constrained systems, due to restrictions on per-unit production cost or
on size / weight / power consumption. Figure shows a number of examples of

8
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Figure 1.4: Visual SLAM for robotics. Left: Parrot AR.Drone flying a pre-defined
path autonomously, using PTAM and a front-facing camera. This line of work is published
in 6H8]. Middle: Parrot Bebop, using LSD-SLAM to autonomously explore and recon-
struct an unknown environment, autonomously avoiding obstacles. This line of work was
joint work with Lukas von Stumberg, and is published in . Right: a 25g Nano-Copter
equipped with a miniature camera and analogue video transition, using computer vision to
fly a simple figure. This line of work was joint work with Oliver Dunkley, and is published

in .

robotic systems developed in conjunction with or prior to this thesis, using visual
SLAM for navigation, 3D reconstruction and obstacle avoidance. Note that we have
chosen to not include the respective publications in this cumulative thesis in order
to keep it thematically consistent, and since some of the work forms part of other
thesises. Table [1.1]in Section [1.5] gives an exhaustive list of all publications.

1.4 State of the Art

In this section we list relevant state-of-the art SLAM and VO systems, all of which
have been proposed shortly before or during the preparation of this thesis. We only
list methods that are based on passive vision, i.e., using one or more passive cameras
as supposed to RBG-D sensors.

DTAM: Dense Tracking and Mapping [88]. DTAM was one of the first dense
and direct SLAM methods that operate on a single monocular camera. Dense depth
maps are estimated for keyframes by accumulating information from many small-
baseline images in a perspective cost volume, from which a dense depth map is
extracted using a variational optimization approach. The camera pose in turn is
tracked by direct image alignment, minimizing the photometric difference between
the observed image, and a predicted view rendered from the dense world model.
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DTAM runs in real-time on a GPU, and was later extended to fuse individual depth
maps into a volumetric world model [87]. It was preceded by the work of Stithmer
et al., [112], which uses a similar approach for dense depth estimation but assumes
given camera poses.

SVO: Semi-Direct Visual Odometry [41]. SVO is a sparse hybrid between
the direct and indirect approach. Point depths are initially estimated using a direct
formulation, optimizing the photometric error between the observed image and the
reference patch for the given point. New frames in turn are aligned using direct image
alignment. Subsequently, the authors “relax” the epipolar constraint, effectively
fixing the established correspondences and converting the formulation to an indirect
one, in order to optimize the system jointly. Effectively, this means that a direct
formulation is used to obtain robust and outlier-free initializations for the underlying
indirect model. SVO is very computationally efficient, running in real-time on a CPU
and even on computationally constrained embedded processors. The approach was
later extended to include line segment features in addition to point features, and to
operate on stereo-, visual-inertial, and omnidirectional data.

ORB-SLAM: A Versatile and Accurate Monocular SLAM System [86].
ORB-SLAM is a classical sparse and indirect SLAM system. The map is optimized
in the background using traditional bundle adjustment, while new frames are tracked
in real-time using model-based tracking. The system is very well engineered, and
characterized by its robustness, accuracy and flexibility. Furthermore, it includes re-
localization and loop-closure detection, and can handle large maps, using a double-
window optimization strategy. It was later extended to stereo- and RGB-D SLAM,
and runs in real-time on laptop CPU.

MSCKF: Multi-State Constraint Kalman Filter [85]. The MSCKF is a
sparse, filtering-based, indirect odometry method for a monocular camera com-
bined with an IMU (visual-inertial odometry). Where most previous approaches
treated visual-inertial odometry as sensor-fusion problem (modeling vision as black-
box 5DoF /6DoF sensor), the MSCKF tightly couples both modalities, thereby opti-
mally exploiting their complementary nature. In fact, it is described as vision-aided
inertial odometry, rather than inertial-aided visual odometry. As the name suggests,
the MSCKF is formulated as extended Kalman filter, keeping as state a sliding win-
dow of recent camera frames. 3D points are triangulated and added as observation
only once they leave the field of view of the camera, thus they are never included in
the state vectol] The MSCKF was extended to a rolling-shutter camera model in

2in later publications, features visible for a long time are added to the state vector in order to
facilitate tracking through long periods in which the camera does not move.
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[77], and is very computationally efficient — running in real-time on a modern smart
phone.

OKVIS: Keyframe-based visual-inertial odometry using non-linear opti-
mization [75]. OKVIS is a sparse, indirect visual-inertial odometry method. It
optimizes a non-linear error function combining visual terms (reprojection error)
and inertial terms over a sliding window of old frames and points. Parameters that
fall out of this window are permanently marginalized, using the Schur complement.
OKYVIS is the optimization-based complement to the MSCKF, and runs in real-time
on a CPU.

1.5 Contribution and Outline

This thesis develops novel direct solutions for real-time SLAM, also called structure
and motion. In contrast to the state of the art, the developed direct methods do
not rely on keypoint detection and matching for establishing correspondences across
the input images, but rather optimize geometry and camera motion directly on the
raw sensor measurements, i.e., the intensity images.

This cumulative thesis comprises 7 full-length publications |1} 355, 9-11], which
are the result of joint work with Thomas Schops, David Caruso, Vladyslav Usenko,
Jorg Stickler, Jirgen Sturm, Prof. Vladlen Koltun and Prof. Daniel Cremers.
Five of these works [1, 4} |5, 9, [11] were published in highly ranked, peer-reviewed
international conferences and journals. [3] has been published as open-access
pre-print, and has been submitted to IEEE Transactions on Pattern Recognition
and Machine Intelligence. [10] has been published as open-access pre-print. Table
shows a complete summary of all works published as part of, or in conjunction
with this thesis. It also lists second-author publications, as well as publications
originating from different (but closely related) projects, which are not included as
part of this cumulative thesis.

In this thesis, two complete systems representing two complementary approaches
(a sparse, direct and a semi-dense, direct one) are developed. Furthermore, a novel
dataset for the evaluation of monocular visual odometry systems, including novel
photometric calibration schemes and benchmark metrics, is presented.

1.5.1 Large-Scale, Direct Monocular SLAM (LSD-SLAM)

LSD-SLAM is a novel approach to perform fully direct SLAM in real-time on a
CPU. As direct method, it does not rely on classical features (keypoints), and thus
can use — and reconstruct — all image regions that carry information, including edges

11
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Camera-Based Navigation of a Low-Cost Quadrocopter. Jakob Engel,
Jirgen Sturm, and Daniel Cremers; In: TROS 2012 .

Accurate Figure Flying with a Quadrocopter Using Onboard Visual
and Inertial Sensing. Jakob Engel, Jirgen Sturm, and Daniel Cremers; In:

ICRA 2012 Workshop (ViCoMoR) [6].

Semi-Dense Visual Odometry for a Monocular Camera. Jakob Engel,
Jiirgen Sturm, and Daniel Cremers; In: ICCV 2013 [9] (Chapter [3).

Scale-Aware Navigation of a Low-Cost Quadrocopter with a Monocular
Camera. Jakob Engel, Jiurgen Sturm, and Daniel Cremers; In: RAS 2014, 62.11

(2014), 1646-1656 [§].

Visual-Inertial Navigation for a Camera-Equipped 25g Nano-
Quadrotor. Oliver Dunkley, Jakob Engel, Jiirgen Sturm, and Daniel Cremers;
In: TROS 2014 Workshop (Aerial Open Source) [2].

LSD-SLAM: Large-Scale Direct Monocular SLAM. Jakob Engel, Thomas
Schops, and Daniel Cremers; In: ECCV 201/ (Chapter {4)).

Semi-Dense Visual Odometry for AR on a Smartphone. Thomas Schops,
Jakob Engel, and Daniel Cremers; In: ISMAR 2014 (Chapter [5)).

Large-Scale Direct SLAM for Omnidirectional Cameras. David Caruso,
Jakob Engel, and Daniel Cremers; In: TROS 2015 (Chapter @

Large-Scale Direct SLAM with Stereo Cameras. Jakob Engel, Jorg Stiick-
ler, and Daniel Cremers; In: JROS 2015 [5] (Chapter [6]).

Reconstructing Street-Scenes in Real-Time From a Driving Car. Vla-
dyslav Usenko, Jakob Engel, Jorg Stiickler, and Daniel Cremers; In: 3DV 2015 .

Direct Visual-Inertial Odometry with Stereo Cameras. Vladyslav Usenko,
Jakob Engel, Jorg Stiickler, and Daniel Cremers; In: ICRA 2016 .

Direct Sparse Odometry. Jakob Engel, Vladlen Koltun, and Daniel Cremers;
In: arXiv 2016 (submitted to TPAMI) [3] (Chapter [8).

A Photometrically Calibrated Benchmark For Monocular Visual Odom-
etry. Jakob Engel, Vladyslav Usenko, and Daniel Cremers; In: arXiv 2016

(Chapter [9)).

Table 1.1: Full Publication Summary. Complete list of publications, ordered chrono-
logically. For publications that form part of this cumulative thesis, we list the respective
chapter. Publications not included in this thesis are listed in gray.
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Figure 1.5: LSD-SLAM. The top shows an example of a large, semi-dense reconstruc-
tion of an entire flat, created with LSD-SLAM - including loop-closure and global map
optimization. The bottom shows a number of color-coded semi-dense depth maps from
different scenes of the TUM monoVO dataset. For further details, see Chapter E}
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and densely textured surfaces. This increases robustness to strong motion blur and
sparsely textured environments compared to traditional indirect approaches.

Geometry is represented in the form of semi-dense inverse depth maps for selected
keyframes, containing depth values for all pixels with sufficient intensity gradient.
For each pixel, a one-dimensional extended Kalman filter is used to estimate depth
from many small-baseline stereo comparisons to other frames, which is interleaved
with spatial regularization (edge-preserving smoothing) and outlier removal. New
frames are tracked in real-time using direct SE(3) image alignment to the closest
keyframe. For global map optimization, keyframes are aligned towards each other
using direct Sim(3) image alignment, and the global map optimized in a pose-graph.
Figure shows an example of some semi-dense depth maps and reconstructed
semi-dense 3D models.

The real-time odometry component of LSD-SLAM is described in [9] (Chapter
B), the integration into a full SLAM system in [4] (Chapter[4). A smartphone-based
implementation, as well as integration with a basic augmented reality engine is
presented in [11] (Chapter [5). Furthermore, LSD-SLAM is extended to stereo in
[5] (Chapter [6)), and to an omnidirectional camera (with a field of view above 180°)
in [1] (Chapter [7)). [12] — which does not form part of this thesis — describes an
approach to tightly integrate an IMU, further increasing robustness and accuracy
of the system significantly.

1.5.2 Direct Sparse Odometry (DSO)

DSO is a monocular visual odometry system, which, like LSD-SLAM, does not rely
on recognizable point-features or corners, but rather optimizes all parameters on the
raw intensity values. In contrast to LSD-SLAM however, DSO uses a sparse for-
mulation, i.e., does not spatially regularize geometry, and instead sparsely samples
points from across many different keyframes. This allows to optimize all involved
parameters — geometry, camera poses and camera intrinsics — in a joint, consistent
Gauss-Newton framework. Note that the direct formulation still allows DSO to sam-
ples points from across all image regions that carry information, including points on
edges and weak intensity variations on mostly white walls. The resulting reconstruc-
tions are similar in completeness to LSD-SLAM, however — when run with real-time
settings — much more sparse; an example is shown in Figure [1.6] DSO takes advan-
tage of a complete photometric calibration, including the camera response function,
pixel-wise light attenuation factors (vignetting) and auto-exposure compensation.

DSO was published in [3] (Chapter [§), and significantly surpasses all previous
monocular SLAM or VO methods (indirect approaches as well as direct approaches)
in tracking accuracy and robustness. This is demonstrated on three publicly avail-
able datasets, comprising several hours of video, in a large variety of real-world
scenes.
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Figure 1.6: DSO. The top shows an example of two long trajectories, tracked with DSO.
Even without loop-closure, the accumulated tracking drift is so small, that it is not visible
in the figures. The bottom shows a number of color-coded sparse depth maps from different
scenes of the TUM monoVO dataset. For further details, see Chapter .

15



Chapter 1. Introduc