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Abstract

This thesis explores direct formulations for real-time, incremental Structure from
Motion / SLAM. Direct methods – in contrast to indirect methods – estimate ge-
ometry directly from the images, i.e., the raw sensor measurements, without inter-
mediate abstraction, for instance in the form of keypoint matches. This has the
major advantage that it does not require points to be recognizable on their own,
thus allowing to use all information from the images including corners, edges, and
weakly textured or repetitive image regions. Furthermore, is allows to employ a
more finely grained (pixel wise) geometry representation.

The first part of the thesis proposes a novel large-scale direct monocular SLAM
system (LSD-SLAM). LSD-SLAM employs a semi-dense formulation: Geometry
is estimated in the form of smooth, semi-dense depth maps, which are obtained by
filtering over many small-baseline stereo comparisons. In turn, the camera is tracked
using direct image alignment, optimizing the relative pose of two frames directly on
the raw images. Subsequent integration into a scale-drift aware pose-graph allows to
perform large-scale mapping, including loop-closure detection and correction as well
as relocalization. LSD-SLAM runs in real-time on a CPU and even on a modern
smart phone. Furthermore, it is extended to other sensor modalities like stereo and
omnidirectional cameras.

In the second part of the thesis, a novel direct and sparse formulation for monoc-
ular visual odometry (DSO) is proposed. It combines a direct model and error
formulation with a sparse geometry representation, i.e., does not incorporate or
enforce a geometry prior such as smoothness. This allows to jointly optimize all
involved parameters, effectively performing the direct equivalent to full bundle ad-
justment. At the same time, as direct method, DSO employs a pixel-wise inverse
depth representation and can use all image regions instead of only corners. Exten-
sive experiments, comprising thousands of run sequences, show that the proposed
direct and sparse formulation substantially outperforms the indirect approach, both
in terms of accuracy as well as robustness.





Zusammenfassung

Diese Doktorarbeit untersucht direkte Ansätze für Structure from Motion und vi-
suelles SLAM (Simultaneous Localization and Mapping). Direkte Methoden – im
Gegensatz zum traditionellen indirekten Ansatz – berechnen 3D Geometrie und
Kamerabewegung direkt auf den von der Kamera aufgenommenen Bildern, ohne
diese zu diskreten Landmarken zu abstrahieren. Dies erlaubt es, alle Bildinforma-
tionen zu verwerten – insbesondere auch Kanten, leichte Schattierungen auf inten-
sitätshomogenen Flächen, sowie repetitive Bildregionen. Desweiteren ermöglicht es
der direkte Ansatz, Geometrie auf natürliche Weise in als präzise inverse Tiefenkarte
zu repräsentieren.

Der erste Teil dieser Arbeit entwickelt eine direkte, semidichte SLAM Metho-
de zur Rekonstruktion weitläufiger Gebiete (“Large-scale direct monocular SLAM”,
LSD-SLAM). LSD-SLAM repräsentiert Geometrie in der Form von semidichten Tie-
fenkarten unter Benutzung eines smoothness-Priors. Tiefenwerte werden durch die
effiziente, probabilistische Fusion großer Mengen von Stereovergleichen berechnet
(Filterung), während die Kamerabewegung mittels direct image alignment, also di-
rekt anhand der Bilder berechnet wird. Die daraus resultierenden relativen Posi-
tionsinformationen zwischen Paaren von Bildern werden in einem zweiten Schritt
in Form eines skalierungs-adaptiven Pose-Graphs gemeinsam optimiert, um global
konsistente Positionen für jedes Kamerabild zu erhalten. Desweiteren integriert LSD-
SLAM eine Komponente zur Kamera-Relokalisierung, sowie zum Erkennen großer
Schleifenschlüsse. LSD-SLAM wurde als open-source code veröffentlicht, und ope-
riert in Echtzeit auf der CPU, ohne eine GPGPU zu benötigen. Im weiteren Verlauf
der Arbeit wird LSD-SLAM auf andere Sensormodalitäten erweitert, insbesondere
wird LSD-SLAM für Stereokameras sowie omnidirektionale Kameras angepasst.

Der zweite Teil dieser Arbeit formuliert eine neuartige direkte und sparse Formu-
lierung des Strukture from Motion Problems in Form einer neu entwickelten Methode
für Visuelle Odometrie (DSO). DSO kombiniert den direkten Ansatz – insbeson-
dere das dahinterstehende probabilistische Modell – mit einer sparsen Geometrie-
Repräsentation. Insbesondere bedeutet dies, das DSO, im Gegensatz zu anderen
direkten Ansätzen, keine Glattheitsannahme macht, sondern einzelne Punkte als
unabhängig betrachtet (gegeben die Kamerapositionen). Dies erlaubt es, alle Modell-
parameter gemeinsam zu optimieren, und entspricht damit dem direkten Äquivalent
zu (indirektem) Bündelausgleich. Da DSO einen direkten Ansatz verfolgt, kann es
jedoch weiterhin alle Bildregionen, und damit alle Bildinformationen, benutzen –
und ist nicht, wie der klassische indirekte Ansatz, auf eindeutig wiedererkennba-



re Landmarken beschränkt. Anhand von ausgiebigen Experimenten wird demons-
triert, dass der vorgeschlagene direkte und sparse Ansatz deutlich höhere Genauig-
keit ermöglicht, und gleichzeitig wesentlich robuster ist als der klassische indirekte
Ansatz.

vi
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Chapter 1
Introduction

We humans perceive the world with our eyes. While we possess and use other senses
such as touch and hearing, the sheer portion of the human brain devoted to visual
processing – about 30%, compared to 8% for touch and 3% for hearing – demon-
strates both the importance as well as the complexity of the ability to understand
the 3D world around us from 2D projections observed by our eyes. While vision
includes a large number of tasks including recognizing different people and objects,
a fundamental component is the ability to perceive the 3D structure of the world,
allowing us to explore unknown environments, drive a car along the road, or interact
with physical objects in our presence.

As artificial devices – autonomous cars, quadrocopters, full-sized robots or even
virtual and augmented reality systems – start to interact with, or adapt to the
3D world around us, they need the ability to perceive, reconstruct and ultimately
understand it in a similar manner: A car that drives itself needs to know where
it is, and it needs to recognize and avoid obstacles, both dynamic and static. To
convincingly display a virtual object standing on a real-world table, both the pose
of the observer, as well as the pose and shape of the table need to be known.

Researchers in computer vision, mathematics and robotics have thus spent
decades on the task of reconstructing the 3D world – geometry and camera mo-
tion – from 2D images. It is commonly called Simultaneous Localization and Map-
ping (SLAM) or Structure and Motion (SaM).

1.1 A Brief History

In this section we give a brief history of the origins of today’s SLAM / SaM formula-
tions, summarizing important milestones and paradigm-shifts from the last decades.
A more comprehensive analysis of the current state of the art will be given in Section
1.4.

Approaches for computing 3D structure from 2D images date back more than
100 years, long before the advent of digital photography or even computers. Very
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early work includes that of Kruppa in 1913 [72], where he formulated an analytic
approach to compute the relative pose of two images from 5 manually labelled
point-correspondences. In the following decades, both the number of points and
the number of images increased, and practical methods for solving the resulting
mathematical systems were developed. The general term “Bundle Adjustment” –
jointly optimizing a “Bundle” of rays – appears as early as 1976 in the work of
D. C. Brown [20], still operating on manually labelled point correspondences in
analogue images.

With the advent of digital imaging, the initial step of manually selecting and
matching suitable points (landmarks) was replaced by automatic feature detection.
First approaches to find suitable points – keypoints – include that of Förstner and
Gülch [42] in 1987 and that of Harris and Stephens [54] in 1988. In the following
years, other approaches such as FAST corners [97], which are significantly faster to
compute, have been developed. Initially, selected keypoints were tracked by mini-
mizing the photometric error between small patches around them. This is commonly
known as the Kanade-Lucas-Tomasi feature tracker (KLT), which was first proposed
in 1991 [117]. Only later, the local optimization approach was replaced by a global
search in an abstracted descriptor space such as SIFT in 1999 [80], SURF in 2006
[18] or ORB in 2011 [98]. This effectively allows to solve the matching problem glob-
ally by approximating it with a nearest-neighbour search, replacing gradient-based
local optimization.

After detecting and matching keypoints as a first step, indirect methods then
proceed by estimating 3D geometry – camera motion and keypoint positions –
from the found 2D correspondences. First real-time capable, incremental methods
were based on Kalman filtering, i.e., accumulating information about the world
as joint Gaussian distribution on all involved parameters. Early examples for
such filtering-based algorithms include the work of Jin et al. [59], and the work
of Davison et al. [31]. With PTAM (Parallel Tracking and Mapping), Klein et
al. showed that real-time SLAM can also be formulated by representing the world
in the form of a sparse, bipartite graph of keypoints and keyframes, which is
optimized in the background using non-linear optimization (Bundle Adjustment).

Simultaneously to the appearance of keypoint detectors, direct and semi-direct
formulations for structure and motion have been proposed. In contrast to the indi-
rect approach (which separates correspondence estimation from geometric optimiza-
tion), direct methods optimize 3D geometry on the raw intensity images without
intermediate abstraction. An early example for direct and dense geometry estima-
tion is the work of Matthies et al. in 1988 [81], which proposes a method to estimate
dense depth from a (calibrated) sequence of images, using pixel-wise filtering inter-
leaved with spatial smoothing. The work of Hanna in 1991 [53] proposes a direct
formulation for estimating dense depth as well as the camera motion from a monocu-

4
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lar image sequence, minimizing a photometric error. A sparse and direct monocular
SLAM system capable of running in real-time was presented by Jin et al. in 2002
[58], which optimizes sparse patch positions & normals as well as camera poses for
a sequence of images, using a photometric error formulation.

1.2 Classification of SLAM Methods

This section defines three ways to classify visual SLAM / SaM methods: direct
vs. indirect, dense vs. sparse, and optimization-based vs. filtering-based. These clas-
sifications are intentionally kept independent of the used sensor modalities. In fact
they apply in the context of different sensor combinations and modalities, including
monocular, stereo, visual-inertial, and RGB-D.

1.2.1 Direct vs. Indirect

Underlying almost all formulations is a probabilistic model that takes noisy mea-
surements Y as input and computes an estimator X for the unknown, hidden model
parameters (3D world model & camera motion). Typically a Maximum Likelihood
approach is used, which finds the model parameters that maximize the probability
of obtaining the actual measurements, i.e.,

X∗ := argmax
X

P (Y|X). (1.1)

Indirect methods then proceed in two steps: First, the raw sensor measurements
are pre-processed to generate an intermediate representation, solving part of the
overall problem, such as establishing correspondences. Second, the computed
intermediate values are interpreted as noisy measurements Y in a probabilistic
model to estimate geometry and camera motion. Note that the first step is typically
approached by extracting and matching a sparse set of keypoints – however other op-
tions exist, like establishing correspondences in the form of dense, regularized optical
flow. This also includes methods that extract and match parametric representa-
tions of other geometric primitives than only points, such as line- or curve-segments.

Direct methods skip the pre-processing step and directly use the actual sensor
values – light received from a certain direction over a certain time period – as
measurements Y in a probabilistic model.

In the case of passive vision, the direct approach thus optimizes a photometric
error, since the sensor provides photometric measurements. Indirect methods on
the other hand optimize a geometric error, since the pre-computed values – point-
positions or flow-vectors – are geometric quantities. Note that for other sensor
modalities like depth cameras or laser scanners (which directly measure geometric
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Photometric error minimization:

estimate geometry directly from the images.

Keypoint

extraction:

abstract images
to keypoint ob-

servations.

Reprojection

error

minimization:

estimate
geometry from
point matches.

Figure 1.1: Direct vs. indirect. The indirect approach (top) splits the overall task –
estimating geometry and camera motion from images – into two sequential steps, keypoint
detection and matching, and geometric optimization on the computed point correspon-
dences. The direct approach (bottom) in turn skips this intermediate representation, and
directly optimizes geometry and camera motion on the raw intensity images.

quantities) direct formulations may also optimize a geometric error. Figure 1.1
conceptually visualizes the difference between the direct and the indirect approach.

1.2.2 Dense vs. Sparse

Sparse methods use and reconstruct only a selected set of independent points (tra-
ditionally corners), whereas dense methods attempt to use and reconstruct all pixels
in the 2D image domain. Intermediate approaches (semi-dense) refrain from recon-
structing the complete surface, but still aim at using and reconstructing a (largely
connected & well-constrained) subset of it.

Apart from the extent of the used image region however, a more fundamental –
and consequential – difference lies in the addition of a geometry prior. In the sparse
formulation, there is no notion of neighborhood, and geometry parameters (keypoint
positions) are conditionally independent given the camera poses & intrinsics1. Dense
(or semi-dense) approaches on the other hand exploit the connectedness of the used
image region to formulate a geometry prior, typically favoring smoothness. In fact,
such a prior is necessarily required to make a dense world model observable from
passive vision alone. In general, this prior is formulated directly in the form of an
additional log-likelihood energy term. Figure 1.2 shows two inverse depth maps, a
semi-dense one created by LSD-SLAM, and a sparse one created by DSO.

1Note that even though early filtering-based methods such as [31] kept track of point-point-
correlations, these originated from marginalized camera poses, not from the model itself.
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Figure 1.2: Dense vs. sparse. Left: Semi-dense, spatially regularized depth map created
by LSD-SLAM. The regularizer assumes neighboring pixels to have similar depth, thereby
correlating them in the model. Middle: Sparse inverse depth map created by DSO. No
smoothness prior is included in the model, thus all points are conditionally independent
given the camera poses. Right: Original image.

1.2.3 Filtering vs. Optimization

The fundamental difference between filtering-based and optimization-based ap-
proaches lies in the way the internal state (i.e., the world model) is represented.

Filtering-based methods estimate and continuously update a joint probability
distribution over all relevant parameters. New measurements are used to update
this distribution (reducing uncertainty), while time progression adds new parame-
ters with large initial uncertainty or increases the uncertainty of existing ones. This
approach is commonly known as Kalman filtering. This representation allows to eas-
ily marginalize old state variables, thus filtering-based methods typically marginalize
old states, and only keep the current camera pose in the state vector.

Recent filtering-based methods such as the multi-state constrained Kalman filter
(MSCKF) include a sliding window of past camera poses and intrinsic calibration pa-
rameters, but do not include geometry parameters (point positions). Instead, these
are only added once they leave the field of view, and then immediately marginalized.

Optimization-based methods on the other hand keep information in the form of
a non-linear energy function, which is continuously optimized in the background.
To facilitate this, they aggressively drop available information and only keep a
small subset of frames (keyframes). This has the advantage of lower computational

complexity in terms of the number of points (O(m3 +m2n) instead of O
(
(m+ n)3

)

for filtering, where m is the number of frames and n the number of points). Further,
it allows linearizations to be re-evaluated after better estimates are available.
On the other hand, it reduces the number of actual observations that can be
incorporated into the system.

In [110], Strasdat et al. draw the conclusion that filtering has a better accuracy
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Figure 1.3: Augmented Reality. Left: external view of an augmented reality application
running on a smartphone. Right: screenshot recorded on the phone, with a virtual car
driving over a real-world surface. The system is discussed in Chapter 5, was developed as
joint work with Thomas Schöps, and is published in [104, 11]

.

per unit of computation trade-off for small systems, (i.e., towards the low end of
available compute budged), whereas optimization-based methods achieve a better
trade-off for larger problems, using significantly more points.

1.3 Applications for SLAM

Real-time visual SLAM and visual odometry have many practical applications,
which are becoming increasingly important for current technological developments.
The most prominent areas are

Visual and Augmented Reality (VR / AR). The camera pose and the geom-
etry of the scene are required to correctly render virtual objects into the image, and
allow them to interact (e.g., collide with or disappear behind) real-world objects.
At the same time, wearable devices – such as a headsets or smart phones – impose
severe restrictions on the cost, size, weight, and power consumption of the used
sensors. This leads to passive vision becoming an important sensor modality – both
in a monocular or stereo set-up, and typically combined with an IMU. Figure 1.3
shows an example of an AR system developed as part of this thesis running on a
modern smart phone, it will be presented in Chapter 5.

Robotics. Examples include autonomous quadrocopters, driver-less cars, and
robot vacuum cleaners. Visual SLAM is used to estimate the robot’s position with
respect to the environment and to navigate without colliding with other objects.
While in some cases other sensor modalities (such as laser scanners or RGB-D cam-
eras) can be used, using passive vision is a good – and sometimes the only – option
for resource-constrained systems, due to restrictions on per-unit production cost or
on size / weight / power consumption. Figure 1.4 shows a number of examples of
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Figure 1.4: Visual SLAM for robotics. Left: Parrot AR.Drone flying a pre-defined
path autonomously, using PTAM and a front-facing camera. This line of work is published
in [38, 6–8]. Middle: Parrot Bebop, using LSD-SLAM to autonomously explore and recon-
struct an unknown environment, autonomously avoiding obstacles. This line of work was
joint work with Lukas von Stumberg, and is published in [113]. Right: a 25g Nano-Copter
equipped with a miniature camera and analogue video transition, using computer vision to
fly a simple figure. This line of work was joint work with Oliver Dunkley, and is published
in [34, 2].

robotic systems developed in conjunction with or prior to this thesis, using visual
SLAM for navigation, 3D reconstruction and obstacle avoidance. Note that we have
chosen to not include the respective publications in this cumulative thesis in order
to keep it thematically consistent, and since some of the work forms part of other
thesises. Table 1.1 in Section 1.5 gives an exhaustive list of all publications.

1.4 State of the Art

In this section we list relevant state-of-the art SLAM and VO systems, all of which
have been proposed shortly before or during the preparation of this thesis. We only
list methods that are based on passive vision, i.e., using one or more passive cameras
as supposed to RBG-D sensors.

DTAM: Dense Tracking and Mapping [88]. DTAM was one of the first dense
and direct SLAM methods that operate on a single monocular camera. Dense depth
maps are estimated for keyframes by accumulating information from many small-
baseline images in a perspective cost volume, from which a dense depth map is
extracted using a variational optimization approach. The camera pose in turn is
tracked by direct image alignment, minimizing the photometric difference between
the observed image, and a predicted view rendered from the dense world model.
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DTAM runs in real-time on a GPU, and was later extended to fuse individual depth
maps into a volumetric world model [87]. It was preceded by the work of Stühmer
et al., [112], which uses a similar approach for dense depth estimation but assumes
given camera poses.

SVO: Semi-Direct Visual Odometry [41]. SVO is a sparse hybrid between
the direct and indirect approach. Point depths are initially estimated using a direct
formulation, optimizing the photometric error between the observed image and the
reference patch for the given point. New frames in turn are aligned using direct image
alignment. Subsequently, the authors “relax” the epipolar constraint, effectively
fixing the established correspondences and converting the formulation to an indirect
one, in order to optimize the system jointly. Effectively, this means that a direct
formulation is used to obtain robust and outlier-free initializations for the underlying
indirect model. SVO is very computationally efficient, running in real-time on a CPU
and even on computationally constrained embedded processors. The approach was
later extended to include line segment features in addition to point features, and to
operate on stereo-, visual-inertial, and omnidirectional data.

ORB-SLAM: A Versatile and Accurate Monocular SLAM System [86].
ORB-SLAM is a classical sparse and indirect SLAM system. The map is optimized
in the background using traditional bundle adjustment, while new frames are tracked
in real-time using model-based tracking. The system is very well engineered, and
characterized by its robustness, accuracy and flexibility. Furthermore, it includes re-
localization and loop-closure detection, and can handle large maps, using a double-
window optimization strategy. It was later extended to stereo- and RGB-D SLAM,
and runs in real-time on laptop CPU.

MSCKF: Multi-State Constraint Kalman Filter [85]. The MSCKF is a
sparse, filtering-based, indirect odometry method for a monocular camera com-
bined with an IMU (visual-inertial odometry). Where most previous approaches
treated visual-inertial odometry as sensor-fusion problem (modeling vision as black-
box 5DoF/6DoF sensor), the MSCKF tightly couples both modalities, thereby opti-
mally exploiting their complementary nature. In fact, it is described as vision-aided
inertial odometry, rather than inertial-aided visual odometry. As the name suggests,
the MSCKF is formulated as extended Kalman filter, keeping as state a sliding win-
dow of recent camera frames. 3D points are triangulated and added as observation
only once they leave the field of view of the camera, thus they are never included in
the state vector2. The MSCKF was extended to a rolling-shutter camera model in

2in later publications, features visible for a long time are added to the state vector in order to
facilitate tracking through long periods in which the camera does not move.
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[77], and is very computationally efficient – running in real-time on a modern smart
phone.

OKVIS: Keyframe-based visual-inertial odometry using non-linear opti-
mization [75]. OKVIS is a sparse, indirect visual-inertial odometry method. It
optimizes a non-linear error function combining visual terms (reprojection error)
and inertial terms over a sliding window of old frames and points. Parameters that
fall out of this window are permanently marginalized, using the Schur complement.
OKVIS is the optimization-based complement to the MSCKF, and runs in real-time
on a CPU.

1.5 Contribution and Outline

This thesis develops novel direct solutions for real-time SLAM, also called structure
and motion. In contrast to the state of the art, the developed direct methods do
not rely on keypoint detection and matching for establishing correspondences across
the input images, but rather optimize geometry and camera motion directly on the
raw sensor measurements, i.e., the intensity images.

This cumulative thesis comprises 7 full-length publications [1, 3–5, 9–11], which
are the result of joint work with Thomas Schöps, David Caruso, Vladyslav Usenko,
Jörg Stückler, Jürgen Sturm, Prof. Vladlen Koltun and Prof. Daniel Cremers.
Five of these works [1, 4, 5, 9, 11] were published in highly ranked, peer-reviewed
international conferences and journals. [3] has been published as open-access
pre-print, and has been submitted to IEEE Transactions on Pattern Recognition
and Machine Intelligence. [10] has been published as open-access pre-print. Table
1.1 shows a complete summary of all works published as part of, or in conjunction
with this thesis. It also lists second-author publications, as well as publications
originating from different (but closely related) projects, which are not included as
part of this cumulative thesis.

In this thesis, two complete systems representing two complementary approaches
(a sparse, direct and a semi-dense, direct one) are developed. Furthermore, a novel
dataset for the evaluation of monocular visual odometry systems, including novel
photometric calibration schemes and benchmark metrics, is presented.

1.5.1 Large-Scale, Direct Monocular SLAM (LSD-SLAM)

LSD-SLAM is a novel approach to perform fully direct SLAM in real-time on a
CPU. As direct method, it does not rely on classical features (keypoints), and thus
can use – and reconstruct – all image regions that carry information, including edges
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Camera-Based Navigation of a Low-Cost Quadrocopter. Jakob Engel,
Jürgen Sturm, and Daniel Cremers; In: IROS 2012 [7].

Accurate Figure Flying with a Quadrocopter Using Onboard Visual
and Inertial Sensing. Jakob Engel, Jürgen Sturm, and Daniel Cremers; In:
ICRA 2012 Workshop (ViCoMoR) [6].

Semi-Dense Visual Odometry for a Monocular Camera. Jakob Engel,
Jürgen Sturm, and Daniel Cremers; In: ICCV 2013 [9] (Chapter 3).

Scale-Aware Navigation of a Low-Cost Quadrocopter with a Monocular
Camera. Jakob Engel, Jürgen Sturm, and Daniel Cremers; In: RAS 2014, 62.11
(2014), 1646–1656 [8].

Visual-Inertial Navigation for a Camera-Equipped 25g Nano-
Quadrotor. Oliver Dunkley, Jakob Engel, Jürgen Sturm, and Daniel Cremers;
In: IROS 2014 Workshop (Aerial Open Source) [2].

LSD-SLAM: Large-Scale Direct Monocular SLAM. Jakob Engel, Thomas
Schöps, and Daniel Cremers; In: ECCV 2014 [4] (Chapter 4).

Semi-Dense Visual Odometry for AR on a Smartphone. Thomas Schöps,
Jakob Engel, and Daniel Cremers; In: ISMAR 2014 [11] (Chapter 5).

Large-Scale Direct SLAM for Omnidirectional Cameras. David Caruso,
Jakob Engel, and Daniel Cremers; In: IROS 2015 [1] (Chapter 7).

Large-Scale Direct SLAM with Stereo Cameras. Jakob Engel, Jörg Stück-
ler, and Daniel Cremers; In: IROS 2015 [5] (Chapter 6).

Reconstructing Street-Scenes in Real-Time From a Driving Car. Vla-
dyslav Usenko, Jakob Engel, Jörg Stückler, and Daniel Cremers; In: 3DV 2015 [13].

Direct Visual-Inertial Odometry with Stereo Cameras. Vladyslav Usenko,
Jakob Engel, Jörg Stückler, and Daniel Cremers; In: ICRA 2016 [12].

Direct Sparse Odometry. Jakob Engel, Vladlen Koltun, and Daniel Cremers;
In: arXiv 2016 (submitted to TPAMI) [3] (Chapter 8).

A Photometrically Calibrated Benchmark For Monocular Visual Odom-
etry. Jakob Engel, Vladyslav Usenko, and Daniel Cremers; In: arXiv 2016 [10]
(Chapter 9).

Table 1.1: Full Publication Summary. Complete list of publications, ordered chrono-
logically. For publications that form part of this cumulative thesis, we list the respective
chapter. Publications not included in this thesis are listed in gray.
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Figure 1.5: LSD-SLAM. The top shows an example of a large, semi-dense reconstruc-
tion of an entire flat, created with LSD-SLAM – including loop-closure and global map
optimization. The bottom shows a number of color-coded semi-dense depth maps from
different scenes of the TUM monoVO dataset. For further details, see Chapter 4.
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and densely textured surfaces. This increases robustness to strong motion blur and
sparsely textured environments compared to traditional indirect approaches.

Geometry is represented in the form of semi-dense inverse depth maps for selected
keyframes, containing depth values for all pixels with sufficient intensity gradient.
For each pixel, a one-dimensional extended Kalman filter is used to estimate depth
from many small-baseline stereo comparisons to other frames, which is interleaved
with spatial regularization (edge-preserving smoothing) and outlier removal. New
frames are tracked in real-time using direct SE(3) image alignment to the closest
keyframe. For global map optimization, keyframes are aligned towards each other
using direct Sim(3) image alignment, and the global map optimized in a pose-graph.
Figure 1.5 shows an example of some semi-dense depth maps and reconstructed
semi-dense 3D models.

The real-time odometry component of LSD-SLAM is described in [9] (Chapter
3), the integration into a full SLAM system in [4] (Chapter 4). A smartphone-based
implementation, as well as integration with a basic augmented reality engine is
presented in [11] (Chapter 5). Furthermore, LSD-SLAM is extended to stereo in
[5] (Chapter 6), and to an omnidirectional camera (with a field of view above 180◦)
in [1] (Chapter 7). [12] – which does not form part of this thesis – describes an
approach to tightly integrate an IMU, further increasing robustness and accuracy
of the system significantly.

1.5.2 Direct Sparse Odometry (DSO)

DSO is a monocular visual odometry system, which, like LSD-SLAM, does not rely
on recognizable point-features or corners, but rather optimizes all parameters on the
raw intensity values. In contrast to LSD-SLAM however, DSO uses a sparse for-
mulation, i.e., does not spatially regularize geometry, and instead sparsely samples
points from across many different keyframes. This allows to optimize all involved
parameters – geometry, camera poses and camera intrinsics – in a joint, consistent
Gauss-Newton framework. Note that the direct formulation still allows DSO to sam-
ples points from across all image regions that carry information, including points on
edges and weak intensity variations on mostly white walls. The resulting reconstruc-
tions are similar in completeness to LSD-SLAM, however – when run with real-time
settings – much more sparse; an example is shown in Figure 1.6. DSO takes advan-
tage of a complete photometric calibration, including the camera response function,
pixel-wise light attenuation factors (vignetting) and auto-exposure compensation.

DSO was published in [3] (Chapter 8), and significantly surpasses all previous
monocular SLAM or VO methods (indirect approaches as well as direct approaches)
in tracking accuracy and robustness. This is demonstrated on three publicly avail-
able datasets, comprising several hours of video, in a large variety of real-world
scenes.
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Figure 1.6: DSO. The top shows an example of two long trajectories, tracked with DSO.
Even without loop-closure, the accumulated tracking drift is so small, that it is not visible
in the figures. The bottom shows a number of color-coded sparse depth maps from different
scenes of the TUM monoVO dataset. For further details, see Chapter 8.
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1.5.3 TUM MonoVO Benchmark Dataset

The TUM monoVO benchmark dataset comprises 50 photometrically calibrated
monocular sequences with a total length of 105 minutes (190’000 frames), taken in a
large variety of different environments under natural, hand-held motion. We propose
a novel evaluation metric to evaluate the tracking accuracy of a visual odometry
method via the accumulated drift after a large loop-closure. Furthermore, a novel
approach for photometric camera calibration (including pixel response function and
a non-parametric vignetting map) is proposed. The dataset was published in [10]
(Chapter 9).

We thoroughly evaluate and contrast DSO with a state-of-the-art indirect monoc-
ular SLAM system (ORB-SLAM), highlighting the effects of photometric noise
vs. geometric noise on both approaches. Furthermore, we analyze the effect of
various system design choices, such as field of view of the camera, image resolution,
number of points used, and the number of keyframes taken – in total, the results
shown in [3] and [10] are based on more than 100 million tracked video frames.
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Figure 1.7: The TUM monoVO dataset. A single frame from each of the 50 sequences.
Note the wide variety of covered environments, including narrow indoor corridors as well
as wide outdoor scenes. It is further described in Chapter 9.
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Chapter 2
Fundamentals

In this chapter we summarize the fundamental mathematical tools and computer
vision concepts used throughout the thesis.

2.1 Camera Calibration

In order to use the data acquired by any sensor, we need to know how this data
relates to the real world. Generally speaking, the more – and the more precise – the
available knowledge about the measurement process, the better it can be exploited.
This section discusses two parts of the camera calibration process: Section 2.1.1
describes commonly used models for geometric calibration, which define the function
that maps a 3D point onto a pixel position in the image. Section 2.1.2 describes
photometric calibration, which defines how scene irradiance is transformed into pixel
intensity values. While photometric calibration is often ignored as it provides little
benefit for keypoint-based techniques, it can greatly improve the results of direct
methods.

2.1.1 Geometric Camera Calibration

The intrinsic camera calibration is a function π : R3 → Ω which maps a 3D point
in the cameras coordinate frame to a 2D point in the image. We will only consider
central camera models, that is, models where all light rays intersect in one point,
the camera center. In this case, the projected position of a point only depends on
its direction from the camera center, and not its distance. Note that real-world
cameras are never strictly central – in order to capture sufficient light, they have a
non-zero area in which light is passed through to the sensor (the aperture), causing
points that are too close or too far away from the camera to be blurred. In practice
however, the aperture is sufficiently small, such that an approximation as central
system is valid.
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Pinhole Projection Model

For a given point x := (x, y, z)T ∈ R3 in 3D, we first define the general perspective
projection function π : R3 → R3 as

π(x) =



u
v
1


 :=

1

z



x
y
z


 . (2.1)

We then define the Camera Matrix K as

K :=



fx 0 cx
0 fy cy
0 0 1


 , (2.2)

where fx, fy corresponds to the camera’s focal length, and cx, cy to the cameras prin-
cipal point. The projected pixel position (u, v) of a point x can then be calculated
as



u
v
1


 = Kπ (x) . (2.3)

This camera model has the nice property that it is linear, and hence maps straight
lines in 3D to straight lines in the image, greatly simplifying many computations like
stereo matching. For a point with known depth, the projection is straight-forward
to invert (re-projection):

x = π−1

([
u
v

]
, z

)
= K−1z



u
v
1


 , (2.4)

where z is the known depth.

Non-linear Distortion

Real-world lenses – in particular lenses with a wide field of view – do not behave
according to the raw pinhole projection model. A common approach to solve this
is to add a non-linear function γ : R2 → R2 (distortion) to the projected point
coordinates, to obtain the final projected point position:

[
u
v

]
= Kγ (π (x)) . (2.5)

Note that we apply the distortion function to the projected point coordinates before
multiplying with the camera matrix K – for readability, we omit the homogeneous
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coordinate where it is 1. It is important to keep in mind that the true projection
function is ultimately defined by the used lens and the placement of the lens with
respect to the image sensor. In practice, there is a number of common ways to
approximate this function in closed form, here we will the two most commonly used
variants.

FOV model. This model is specifically designed for fisheye lenses and was first
proposed by Fevernay and Faugeras [33]. It assumes that the distance of a given
pixel in the image to the principal point is proportional to the angle between the
optical axis and the ray connecting the optical center with the 3D point. This model
assumes radially symmetric distortion, i.e.,

γF

([
uu
vu

])
:=

[
ud
vd

]
:=

R(ru)

ru

[
uu
vu

]
, (2.6)

where ru :=
√
u2
u + v2

u. The function R is characterized by only one parameter ω

R(ru) :=
1

ω
arctan

(
2ru tan

(
ω

2

))
(2.7)

A useful property of this model is the existence of a closed-form inverse

γ−1
F

([
ud
vd

])
=

[
uu
vu

]
=
R−1(rd)

rd

[
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vd

]
, (2.8)

with rd :=
√
u2
d + v2

d and

R−1(rd) :=
tan(rdω)

2 tan ω
2

. (2.9)

Radio-Tangential Model. A widely used approach is to approximate the dis-
tortion using a polynomial of degree n – higher degree approximations have more
expressive power, but are more difficult to calibrate and may become numerically
unstable. Here we give as example the full model used as default in OpenCV, which
has a total of 8 parameters (6 radial coefficients, κ1 to κ6 and 2 tangential coeffi-
cients, ρ1 and ρ2). Higher-degree coefficients can be set to zero, effectively reducing
the degree of the used approximation. This model is well suited to remove distor-
tion from consumer-grade cameras, which can be afflicted by significant tangential
distortion. It is however not well suited to model fisheye lenses with large distortion,
and large field of view (120◦ and more). The distortion function is given by

γT

([
uu
vu

])
:=


uu

1+κ1r2
u+κ2r4

u+κ3r6
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1+κ4r2
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2
u + 2v2

u) + 2ρ2uuvu


 , (2.10)
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where ru :=
√
u2
u + v2

u is defined as before. Note that this distortion model has no
closed-form inverse. Furthermore, in contrast to the FOV model it does not assume
strict radial symmetry. While in practice, non-radial distortion is uncommon in
high-quality cameras, it may be caused e.g. by the optical axis of the lens not being
exactly perpendicular to the sensor.

Unified Omnidirectional Projection Model

One of the fundamental limitations of the pinhole model – even when applying
non-linear distortion – is, that it can only model lenses with a field of view below
180◦. To model optical systems with a larger field of view, we will use the unified
omnidirectional model, which is characterized by spherical projection followed by a
pinhole projection. That way, it can model optical systems with arbitrarily large
field of view; as long as they can be approximated as a central system. A given point
x := (x, y, z)T ∈ R3 in 3D is first projected onto the unit sphere by normalizing it
to length one. Afterwards, perspective projection using a camera center shifted by
−ξ is applied:

πU(x) =




x
z+ξ‖x‖

y
z+ξ‖x‖

1


 . (2.11)

One of the benefits of this formulation is again the existence of a closed-form inverse,
given by

π−1
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Afterwards, multiplication with the camera matrix K as well as non-linear distortion
are applied, the full projection function is hence again given by

[
u
v

]
= Kγ (πU (x)) . (2.13)

Note that pinhole projection can be seen as a special case of the unified model with
ξ = 0.

Image Rectification

Image rectification describes the process of warping an image to fit a different projec-
tion model. It is commonly used to remove non-linear distortion in a pre-processing
step, such that sub-sequent computations can use a raw pinhole or unified projection
model.
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2.1. Camera Calibration

Figure 2.1: Image rectification. Left: original, radially distorted image – note how
straight lines in the real world project to curves in the image. Middle: full rectified image,
using Equation (2.14), note that the undistorted image domain is not square – however,
straight lines in the real world project to straight lines in the image. The right image
shows the rectified image, cropped to the maximal square region that is well-defined.

Given an original image I : Ω → R and the corresponding calibrated projection
function π : R3 → Ω, we can warp the image to compute a synthetic image I ′ : Ω′ →
R following a new projection function π′ : R3 → Ω′ as

I ′(x) = I
(
π
(
π′−1(x, 1

))
. (2.14)

The new projection function π′, as well as the domain of the synthetic (rectified)
image Ω′ can be defined arbitrarily. Generally, Ω′ is chosen such that it preserves
a maximal area of the original image, while not including any regions that are not
covered in the original image. Figure 2.1 shows an example of image rectification.

Note that rectifying images changes the spatial sampling of the underlying con-
tinuous image function, which can introduce significant blur or aliasing effects. It is
thus advisable to choose the new projection function π′ such that it minimizes the
introduced distortions.

2.1.2 Photometric Camera Calibration

A fundamental assumption for direct methods is the brightness constancy assump-
tion, stating that points in 3D have the same color when observed in different images.
In practice, it is not the pixel value that is constant over time, but the emitted en-
ergy per unit area per unit solid angle

[
W

m2·sr

]
, called radiance of a given 3D surface

point. Photometric (or radiometric) calibration describes the process of calibrating
the relation between scene radiance and the intensity value measured by the sensor.
In the context of multi-view stereo – in order to match geometry across different
images, taken with the same (or equivalent) camera – only a relative calibration
(i.e., up to scale) is required.

While there is a large number of physical phenomena affecting the measurement
process, in this thesis we only consider the most influential factors: exposure time,
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pixel response, and lens vignetting. The overall photometric sensor model is thus
given by

I(x) = G
(
tV (x)B(x)

)
, (2.15)

where B : Ω → R is the scene radiance, V : Ω → [0 . . . 1] the pixel-wise light atten-
uation caused by lens vignetting, t the exposure time, and G : R → {0 . . . 255} the
response function. Since we operate on monochromatic images, white-balancing is
not included in the model. The simplest way to incorporate a photometric calibra-
tion into photometric stereo is to apply the inverse of (2.15) to compute B for all
images as a very first step in the algorithmic pipeline, and use this instead of the
original image I.

A straight-forward and easy to reproduce approach to photometrically calibrate
a camera will be proposed in Chapter 9, and incorporated into a direct monocular
visual odometry method (DSO) in Chapter 8.
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2.2. 3D Geometry

2.2 3D Geometry

This thesis is about estimating motion in, and geometry of the three-dimensional
world, hence representing position and orientation of points and objects in 3D is of
particular importance. In this section we will introduce basic 3D geometric calcula-
tions and representations, which will be used throughout the remainder of the thesis.

We define a 3D coordinate transformation from frame A to frame B in terms
of its relative translation tBA ∈ R3 and rotation RB

A ∈ SO(3), which form the trans-
formation matrix TBA ∈ SE(3). Here, SE(3) stands for the special Euclidean group
defined as

SE(3) :=








R t

0 0 0 1


 |R ∈ SO(3), t ∈ R




. (2.16)

The rotation R is from the special orthogonal group

SO(3) :=
{
R ∈ R

3×3 : RRT = 1 ∧ det(R) = +1
}
. (2.17)

A 3D point xA in frame A can then be transformed into frameB by multiplication
with the respective transformation matrix

x̃B = TBA x̃A (2.18)

where the tilde ·̃ represents a points homogeneous representation. Using this repre-
sentation, transformation matrices can be concatenated by simple multiplication

TCA = TCB T
B
A (2.19)

and inverted

TAB = (TBA )−1 =

(
RT −RT t
0 1

)
. (2.20)

While this matrix representation is often convenient to work with, it is an over-
parameterization of the underlying group (using 3 parameters for translation and
9 for rotation), which only has 6 degrees of freedom (3 for translation and 3 for
rotation). In the following we will give some alternative representations for 3D poses
which are used when less parameters and less, or more simple intrinsic constraints
are required, as is the case for optimization.
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2.2.1 Quaternions

Quaternions represent 3D rotation as a point on the 4D unit sphere. They are the
most compact singularity-free rotation representation. The direct SLAM and visual
odometry systems presented in this thesis use quaternions for internal state repre-
sentation. Given a quaternion q = (x, y, z, w)T ∈ S3, the corresponding rotation
matrix can be computed as

R =




1− 2y2 − 2z2 2xy − 2zw 2xz + 2yw
2xy + 2zw 1− 2x2 − 2z2 2yz − 2xw
2xz − 2yw 2yz + 2xw 1− 2x2 − 2y2


 . (2.21)

A minimal representation can be derived from this by simply dropping w – it can
be recovered from the unit length constraint as w =

√
1− x2 − y2 − z2.

2.2.2 Euler Angles

Euler angles represent 3D orientation as three angles, denoting three sequential
rotations around certain axis. There are many possibilities how these axis and
the order in which they are rotated can be defined, which in practice renders this
representation ambiguous. As any minimal representation of SO(3), Euler angles
suffer from singularities. A particular problem for Euler Angles is, that in certain
configurations they lose a degree of freedom (“Gimbal Lock”), i.e., they locally loose
the ability to be perturbed in all three dimensions and the Jacobian will lose one
rank – making this representation unsuited for optimization.

One of the most common use cases is in the context of aircraft navigation, where
the three angles are termed roll (rotation around the front-to-back axis of the air-
craft), pitch (rotation around the left-to-right axis of the aircraft) and yaw (rotation
around the vertical axis). As in this case both roll and pitch are typically small
(except for extreme flight maneuvers), Gimbal locks do not occur.

2.2.3 Lie Representation

A particularly elegant way to minimally represent 3D poses can be derived using
Lie group theory. A Lie group is a group that is also a smooth manifold, where the
group operations (multiplication and inversion) are smooth maps. There are many
Lie Groups, the most important ones in the context of this thesis being the Special
Euclidean Group as defined in Eq. 2.16, the Special Orthogonal Group as defined in
Eq. 2.17, and the group of 3D Similarity Transforms Sim(3), defined as

Sim(3) :=








sR t

0 0 0 1


 |R ∈ SO(3), t ∈ R

3, s ∈ R
+




. (2.22)
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Note that in the literature (e.g. [35]) Sim(3) can also be defined as

Sim(3) =








R t

0 0 0 s−1


 |R ∈ SO(3), t ∈ R

3s ∈ R
+




, (2.23)

which leads to different choice of generators (see below), as well as different results
for the Adjoint representation, the logarithmic and the exponential map. Essentially,
(2.22) first applies scaling, then rotation and translation, whereas (2.23) first applies
rotation and translation, and then scaling.

Each Lie Group gives rise to a corresponding Lie Algebra, which defines the
structure of the tangent space around the identity. It is given by all linear combina-
tions of its generator matrices, which are the derivatives with respect to elementary
rotation, translation and scaling evaluated around the identity. They are given by

Grx
:=




0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0


 , Gry

:=




0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0


 , Grz

:=




0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 ,

Gtx :=




0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


 , Gty :=




0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0


 , Gtz :=




0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 ,

Gs :=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 .

We can now define the Lie algebras corresponding to the introduced Lie groups
SO(3), SE(3), and Sim(3) as

so(3) :=
{
ω1Grx

+ ω2Gry
+ ω3Grz

|(ω1, ω2, ω3) ∈ R
3
}
, (2.24)

se(3) :=
{
A+ v1Gtx + v2Gty + v3Gtz |A ∈ so(3), (v1, v2, v3) ∈ R

3
}
, (2.25)

sim(3) := {B + λGs|B ∈ se(3), λ ∈ R} . (2.26)

Elements can be mapped from a Lie algebra to the respective Lie group using the
matrix exponential, and vice-versa from the Lie group to the Lie algebra using the
matrix logarithm. For convenience, we will denote elements of a Lie algebra directly
with vectors containing the respective generator matrix coefficients when convenient,
omitting the in the literature often used hat ( ·̂ ) and vee (·∨) operators.

The resulting representation is ideally suited for differential quantities on a Lie
group (such as uncertainty or derivatives), as
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• it is a minimal representation with an exact, surjective mapping exp: se(3)→
SE(3).

• the Adjoint can be used to linearly and exactly map elements from one tangent
space to another (see Section 2.2.3). This also means that all tangent-spaces
have the same (linear) structure.

• it is defined in terms of the derivatives with respect to the underlying motion
types, and hence intuitive to understand, and to use in the context of
gradient-based optimization.

In the remainder of this section, we give a number of useful derivations and defini-
tions for the Adjoint, the Jacobian, and uncertainty representation on Lie groups.
For brevity and ease of notation, we only consider SE(3) – however, all given deriva-
tions can be generalized to SO(3) and Sim(3).

The Adjoint

We will follow the approach by Eade [35] and directly define the Adjoint by its
most important property: The Adjoint is a function that “moves” elements between
different tangent spaces of a Lie group. Given a group element T and an algebra
element ξ with

T =

(
R t
0 1

)
∈ SE(3) ξ =

(
u
ω

)
∈ se(3). (2.27)

The Adjoint AdjT ∈ R6×6 is a linear function that “moves” ξ from the right tangent
space of T to the left tangent space of T , i.e.,

T · eξ̂ = eÂdjT ·ξ · T. (2.28)

We can obtain a closed-form expression for the Adjoint by using that AeXA−1 =
eAXA

−1
for any invertible matrix A, i.e.,

eÂdjT ·ξ = T · eξ̂ · T−1 (2.29)

= eT ·ξ̂·T−1

(2.30)

ÂdjT · ξ = T · ξ̂ · T−1 (2.31)

which can be solved for AdjT :

AdjT =

[
R t×R

03×3 R

]
∈ R

6×6. (2.32)

The Adjoint representation for SO(3) and Sim(3) can for example be found in [35,
79, 107].
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Jacobians

The definition of a Lie algebra element ξ as coefficient vector of the generator ma-
trices G1 to G6 and ∂eGx

∂x

∣∣∣
x=0

= G directly implies that

∂eξ̂

∂ξi

∣∣∣∣∣
ξ=0

= Gi for i = 1 . . . 6. (2.33)

In the context of 3D reconstruction and SLAM, almost always derivatives of func-
tions that involve rotating and translating points are required. Let

ỹ(ξ,x) := eξ̂x̃ (2.34)

define the 3D transformation of a point (note that for ease of notation, we include the
homogeneous coordinate – in practice it is always one, and the respective derivative

always zero). Since ỹ is linear in eξ̂ and x̃, the derivative with respect to ξ around
the identity can again be obtained by the generators

∂ỹ(ξ,x)

∂ξi

∣∣∣∣∣
ξ=0

=
∂eξ̂

∂ξi

∣∣∣∣∣
ξ=0

x̃ = Gix̃ for i = 1 . . . 6. (2.35)

The Adjoint can then be used to derive functions involving pose concatenations:
Given a function

ỹ′(ξ,x) := Teξ̂x̃. (2.36)

We can use (2.28) to first “move” ξ all the way to the left

ỹ′(ξ,x) = eÂdjT ξT x̃, (2.37)

and then use (2.35) to compute the derivative as

∂ỹ′(ξ,x)

∂ξ

∣∣∣∣∣
ξ=0

=
∂eξ̂

′
T x̃

∂ξ′

∣∣∣∣∣
ξ′=0

∂AdjT ξ

∂ξ

∣∣∣∣∣
ξ=0

=
[
G1T x̃| . . . |G6T x̃

]
· AdjT , (2.38)

where we use [·| . . . |·] to denote the full Jacobian obtained from writing the partial
derivative vectors from (2.35) in matrix form. Note that these derivations only hold
if the exponential map is evaluated around zero.

Uncertainty representation on poses

In a Gaussian framework, uncertainties on a Lie-group element T ∈ SE(3) are best
represented in the respective tangent space, i.e.,

T =: eǫ̂T0 with ǫ ∼ N (0,Σǫ). (2.39)
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Using the above Jacobian derivations, the Adjoint can then be used to propagate
uncertainties through pose concatenations as

T ′ = TaTTb =: eǫ̂
′

TaT0Tb︸ ︷︷ ︸
=T ′

0

with ǫ′ ∼ N (0,AdjTa
ΣǫAdjTTa︸ ︷︷ ︸

=Σǫ′

), (2.40)

and through pose inversion as

T ′ = T−1 =: eǫ̂
′

T−1
0︸︷︷︸

=T ′
0

with ǫ′ ∼ N (0,AdjT−1ΣǫAdjTT−1︸ ︷︷ ︸
=Σǫ′

). (2.41)

Note that due to the linearity of the Adjoint, propagating uncertainties in this way
is exact, i.e., does not involve (additional) linearizations. In particular, this implies
that the accuracy of the linearizations required to “fit” the true distribution to
a Gaussian does not depend on the specific tangent space chosen to represent it
in. Equivalently, we will show in the following chapter that when optimizing over
poses in this multiplicative representation, the computed updates will not depend
on the specific tangent space they are computed in. In practice however, choosing
an unsuitable tangent space can cause numerical issues.
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2.3 Non-Linear Least-Squares Optimization

Many computer vision problems can be formulated as finding the minimizer of an
energy function E. This is often complemented with other algorithmical procedures,
for instance to determine suitable (key-)points and (key-)frames, to identify outliers,
and to find sufficiently good initializations for the parameters optimized over. All
methods developed in this thesis have at their core an energy function which is
minimized to find the desired model parameters, such as camera poses or geometry
parameters. It generally has a non-linear least-squares form, i.e., can be written as

E(x) =
∑

i

r2
i (x), (2.42)

where x is the function argument, and the ri are non-linear scalar functions which
can have arbitrary form. Least-squares minimization problems arise naturally as log-
likelihood of probabilistically independent and Gaussian distributed measurements.
In most practical cases, the residual functions are non-convex, making the overall
energy function E non-convex as well. They are often written as stacked residual
vector, i.e.,

E(x) = ‖r(x)‖2
2, with r = [r1, . . . , rn]T . (2.43)

In Section 2.3.1 we formulate the Gauss-Newton algorithm for minimizing least-
square energy functions, as well as well-known extensions such as Levenberg-
Marquad, iterative reweighing, and the Schur complement trick. Section 2.3.2 de-
scribes an elegant way to optimize over non-Euclidean manifolds, such as Lie groups.

2.3.1 Gauss-Newton Optimization

The Gauss-Newton algorithm iteratively computes and solves a quadratic approxi-
mation to E by linearizing the residual function r, using a first-order Taylor expan-
sion

E(x0 + δ) = ‖r(x0 + δ)‖2
2 (2.44)

≈ ‖r0 + Jrδ‖2
2 (2.45)

= rT0 r0 + 2δT JTr r0︸ ︷︷ ︸
=:b

+δT JTr Jr︸ ︷︷ ︸
=:H

δ, (2.46)

with

Jr =
dr(x)

dx

∣∣∣∣∣
x0

and r0 = r(x0). (2.47)

Setting the derivative of the resulting quadratic function to zero gives

Hδ + b = 0, (2.48)
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which can be solved for the increment δ as

δ = −H−1b = − (JTr Jr)
−1JTr︸ ︷︷ ︸

=J
†
r

r0, (2.49)

where J†
r is the Moore-Penrose pseudoinverse of Jr. If the system is non-degenerate

(i.e., all parameters are fully observable), it has full rank and there exists a unique
solution. The computed increment is added to the evaluation point to give the new
estimate

x← x0 + δ. (2.50)

This process is repeated until convergence.

Note that while the Gauss-Newton method computes and solves a quadratic
approximation to E using a linear approximation to r, this only approximates the
second-order Taylor expansion of E. The exact second-order expansion is given by

dE(x)

dx
= 2JTr r0 = 2b (2.51)

[
d2E(x)

dx2

]

jk

= 2
∑

i

(
∂ri
∂xj

∂ri
∂xk

+ ri
∂2ri

∂xj∂xk

)
(2.52)

≈ 2
∑

i

(
∂ri
∂xj

∂ri
∂xk

)
= 2 [H]jk , (2.53)

where [·]ik denotes the corresponding matrix entry. In practice, this is a good

approximation if ∂ri

∂xj

∂ri

∂xk
≫ ri

∂2ri

∂xj∂xk
, which is the case if the residuals ri are small

or close to linear.

In many cases it is desirable to weight the residuals differently, i.e., minimize a
function of the form

E(x) =
∑

i

wir
2
i (x) = ‖r(x)‖2

W, (2.54)

where wi are constant, non-negative weights, and W is the respective diagonal weight
matrix. The wi can either directly be incorporated into the residual functions as
r′
i(x) :=

√
wiri(x), or explicitly kept as separate weights, which leads to H = JTr WJr

and b = JTr Wr0.

Levenberg-Marquad

The Gauss-Newton algorithm offers quadratic convergence rates close to the min-
imum, however it can become unstable for poorly initialized parameters. In such
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cases, simple gradient descent is more reliable, since – for sufficiently small step-size
and under certain conditions – it is guaranteed to converge to a local minimum. The
Levenberg-Marquad algorithm is designed to resolve this by adaptively “interpolat-
ing” between Gauss-Newton and gradient descent steps via a dampening parameter
λ. The updates are then computed as

δ = −(H + λ diag(H))−1b, (2.55)

where diag(H) is the matrix containing only the diagonal entries of H. If λ is small,
H dominates and the computed step will be close to the original Gauss-Newton step
from (2.49). In turn, if λ is large, λ diag(H) dominates and the computed step will
be close to a gradient descent step, with step-size 1

λ
, and scaled with the curvature

along each dimension to avoid slow convergence along dimensions with low gradient.
The full Levenberg-Marquad algorithm then proceeds as follows:

Algorithm 1: Levenberg Marquad Algorithm

1 Initialize λ, and x(0);
2 do

3 Jr := dr(x)
dx

∣∣∣∣∣
x(n)

and r0 := r(x(n));

4 H := JTr WJr and b = JTr Wr0;

5 δ := −
(
H + λdiag(H)

)−1
b;

6 if E(x(n) + δ) < E(x(n)) then
7 x(n+1) ← x(n) + δ;
8 Decrease λ;

9 else
10 x(n+1) ← x(n);
11 Increase λ;

12 end

13 while ‖δ‖ > ǫ;

The best strategy for increasing, decreasing, and initializing λ depends on the shape
and structure of E, on the accuracy of the initialization x(0), and on the relative
computation cost of evaluating E, computing H, b, and solving for δ. When mini-
mizing a photometric error, we found that using λinc = 5λ, λdec = 1

2
λ, and λ0 = 0.01

give a good trade-off in terms of convergence time.

The Schur Complement Trick

When optimizing over a large number of variables n (e.g., several camera poses and
thousands of point positions), solving the n × n linear equation system Hx = b
becomes the computationally most expensive part of GN / LM optimization. In
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practice, E often has a specific sparsity structure that can be exploited: The Schur
complement trick can be applied if there exists a variable partitioning x = [x1,x2]

T ,
with n1 := dim(x1)≪ dim(x2) =: n2, such that all components of x2 are condition-
ally independent given x1. In other words, this means that residuals may depend on
any components from x1, but only on a single component from x2. Note that each
component can be a low-dimensional cluster of variables, such as a 3D point or a
scalar inverse depth value. We can write the (n1 + n2)× (n1 + n2) linear system as

(
H11 H12

H21 H22

)(
x1

x2

)
=

(
b1

b2

)
, (2.56)

where H22 is a (block-) diagonal matrix. The Woodbury matrix identity can then
be used to show that

(
H11 −H12H

−1
22 H21

)
x1 =

(
b1 −H12H

−1
22 b2

)
, (2.57)

which is a n1×n1 linear system and thus much faster to solve. In turn, H−1
22 is easy

to invert since it is a (block-) diagonal matrix. Afterwards, the solution for x2 can
be recovered by resubstitution, using

H21x1 + H22x2 = b2. (2.58)

The Schur complement trick greatly speeds up sparse SLAM methods, where x1

contains the camera poses and x2 the (conditionally independent) geometry param-
eters. In practice, each GN / LM step then scales with O(n2

1(n1 + n2)), instead of a
näıve implementation which scales with O((n1 +n2)

3). The Schur complement trick
will be used in Chapter 8 in the context of Direct Sparse Odometry (DSO).

Iteratively Reweighed Least-Squares

A least-squared (L2) error formulation corresponds to Gaussian distributed residu-
als. However, in most practical applications, residuals are not Gaussian distributed.
Most importantly, there will be outliers with large residual values – in a least squares
formulation, these have a strong impact on the solution, corrupting the system. To
mitigate the influence of outliers and to approximate other residual distributions,
the L2 norm is replaced by robust error norms (M-estimators) ρ : R→ R which are
designed to reduce the influence of large residuals. The energy function becomes

E(x) =
∑

i

ρ
(
ri(x)

)
, (2.59)

which is then minimized using iteratively reweighed least-squares. It can be derived as
follows: First, we note that minimizing (2.59) corresponds to finding a zero-crossing
of its derivative, i.e., finding x for which

0 =
dE(x)

dx
=
∑

i

dρ(ri)

dri

dri(x)

dx
. (2.60)
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Figure 2.2: M-estimators. Frequently used error norms ρ, their respective influence
functions ψ, and weight functions w. The Huber norm has the advantage of being convex,
but in turn still gives linear influence to outliers. For the Cauchy norm, the influence of
outliers is bounded logarithmically, whereas for Tuckey it is explicitly set to zero, once a
certain threshold is crossed.

we now define ψ = dρ(r)
dr

(called the influence function of ρ), and expand the above
expression to

0 =
dE(x)

dx
=
∑

i

ψ(ri)

ri
ri
dri(x)

dx
, (2.61)

where we define the weight function of ρ as w(r) = ψ(r)
r

. This turns out to be exactly
the system of equations obtained when minimizing

E ′(x) =
∑

i

w
(
ri(xc)

)
r2
i (x), (2.62)

where xc is held constant and set to the most recent estimate of x, i.e., the current
evaluation point. Essentially, this derivation transforms (2.59) into a weighted least-
squares system by “fixing” the weights in each iteration. In practice, there exist
many possible choices for ρ with different advantages and disadvantages – the most
commonly used choices are summarized in Figure 2.2.
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2.3.2 Gauss-Newton on non-Euclidean Manifolds

When optimizing over non-Euclidean spaces – such as rigid body poses – a challenge
arises from the fact that in in many cases (including SO(3), SE(3), and Sim(3)), all
parameterizations either have singularities (such as Euler angles and Lie algebra
elements) or are over-parameterized (such as quaternions and rotation matrices).
A common approach to solve this is to represent state estimates in a singularity-
free, over-parameterized space, while computing δ-increments on a minimal param-
eterization, evaluated around a point that is far away from singularities. In the
following, we will use Lie to denote the over-parameterized, singularity-free space
(such as SO(3), SE(3), and Sim(3)), and lie to denote the corresponding minimal
representation (such as so(3), se(3), and sim(3)). We further define the

⊞ : lie× Lie→ Lie (2.63)

operator, which applies an increment to a state estimate. When operating on Lie
groups, it can be defined in a left-multiplicative formulation as

ξ ⊞T := eξ̂T, (2.64)

or in a right-multiplicative formulation as

ξ ⊞T := Teξ̂. (2.65)

Both formulations are linearly related by the Adjoint (see (2.28)), and therefore
yield exactly equivalent update steps. Note however, that the computed inter-
mediate values will be different for both formulations, which is important when
interpreting the inverse Hessian H−1 as uncertainty.

Given a least-squares energy function E : Lie→ R and a current estimate T (n) ∈
Lie, each GN / LM iteration then computes an increment δ ∈ lie to a modified
(“shifted”) energy function E(n) : lie(3)→ R, defined as

E(n)(δ) := E(δ ⊞T (n)), (2.66)

which is evaluated around δ = 0. Correspondingly, the update step is replaced by a
multiplicative update

T (n+1) ← δ ⊞T (n). (2.67)

Note that in this formulation, the exponential map is always linearized around zero,
which – in the case of Lie algebras or Euler angles – is far away from any singularities.
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Chapter 3. Semi-Dense Visual Odometry for a Monocular Camera

Abstract We propose a fundamentally novel approach to real-time vi-
sual odometry for a monocular camera. It allows to benefit from the
simplicity and accuracy of dense tracking – which does not depend on
visual features – while running in real-time on a CPU. The key idea is
to continuously estimate a semi-dense inverse depth map for the current
frame, which in turn is used to track the motion of the camera using dense
image alignment. More specifically, we estimate the depth of all pixels
which have a non-negligible image gradient. Each estimate is represented
as a Gaussian probability distribution over the inverse depth. We prop-
agate this information over time, and update it with new measurements
as new images arrive. In terms of tracking accuracy and computational
speed, the proposed method compares favorably to both state-of-the-art
dense and feature-based visual odometry and SLAM algorithms. As our
method runs in real-time on a CPU, it is of large practical value for
robotics and augmented reality applications.

3.1 Towards Dense Monocular Visual Odometry

Tracking a hand-held camera and recovering the three-dimensional structure of the
environment in real-time is among the most prominent challenges in computer vision.
In the last years, dense approaches to these challenges have become increasingly pop-
ular: Instead of operating solely on visual feature positions, they reconstruct and
track on the whole image using a surface-based map and thereby are fundamentally
different from feature-based approaches. Yet, these methods are to date either not
real-time capable on standard CPUs [88, 112, 122] or require direct depth measure-
ments from the sensor [66], making them unsuitable for many practical applications.

In this paper, we propose a novel semi-dense visual odometry approach for a
monocular camera, which combines the accuracy and robustness of dense approaches
with the efficiency of feature-based methods. Further, it computes highly accurate
semi-dense depth maps from the monocular images, providing rich information about
the 3D structure of the environment. We use the term visual odometry as supposed
to SLAM, as – for simplicity – we deliberately maintain only information about the
currently visible scene, instead of building a global world-model.

3.1.1 Related Work

Feature-based monocular SLAM. In all feature-based methods (such as [31,
69]), tracking and mapping consists of two separate steps: First, discrete feature
observations (i.e., their locations in the image) are extracted and matched to each
other. Second, the camera and the full feature poses are calculated from a set of such
observations – disregarding the images themselves. While this preliminary abstrac-
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far

close

Figure 3.1: Semi-Dense Monocular Visual Odometry. Our approach works on a
semi-dense inverse depth map and combines the accuracy and robustness of dense visual
SLAM methods with the efficiency of feature-based techniques. Left: video frame, Right:
color-coded semi-dense depth map, which consists of depth estimates in all image regions
with sufficient structure.

tion step greatly reduces the complexity of the overall problem and allows it to be
tackled in real time, it inherently comes with two significant drawbacks: First, only
image information conforming to the respective feature type and parametrization –
typically image corners and blobs [54] or line segments [68] – is utilized. Second, fea-
tures have to be matched to each other, which often requires the costly computation
of scale- and rotation-invariant descriptors and robust outlier estimation methods
like RANSAC.

Dense monocular SLAM. To overcome these limitations and to better exploit
the available image information, dense monocular SLAM methods [88, 122] have
recently been proposed. The fundamental difference to keypoint-based approaches
is that these methods directly work on the images instead of a set of extracted
features, for both mapping and tracking: The world is modeled as dense surface
while in turn new frames are tracked using whole-image alignment. This concept
removes the need for discrete features, and allows to exploit all information present
in the image, increasing tracking accuracy and robustness. To date however, doing
this in real-time is only possible using modern, powerful GPU processors.

Similar methods are broadly used in combination with RGB-D cameras [66],
which directly measure the depth of each pixel, or stereo camera rigs [26] – greatly
reducing the complexity of the problem.

Dense multi-view stereo. Significant prior work exists on multi-view dense re-
construction, both in a real-time setting [88, 94, 112], as well as off-line [43, 100].
In particular for off-line reconstruction, there is a long history of using different
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far

close

original image semi-dense depth map (ours)

keypoint depth map [69] dense depth map [88] RGB-D camera [114]

Figure 3.2: Semi-Dense Approach. Our approach reconstructs and tracks on a semi-

dense inverse depth map, which is dense in all image regions carrying information (top-
right). For comparison, the bottom row shows the respective result from a keypoint-based
approach, a fully dense approach and the ground truth from an RGB-D camera.

baselines to steer the stereo-inherent trade-off between accuracy and precision [90].
Most similar to our approach is the early work of Matthies et al., who proposed
probabilistic depth map fusion and propagation for image sequences [81], however
only for structure from motion, i.e., not coupled with subsequent dense tracking.

3.1.2 Contributions

In this paper, we propose a novel semi-dense approach to monocular visual odometry,
which does not require feature points. The key concepts are

• a probabilistic depth map representation,

• tracking based on whole-image alignment,

• the reduction on image-regions which carry information (semi-dense), and

• the full incorporation of stereo measurement uncertainty.

To the best of our knowledge, this is the first featureless, real-time monocular visual
odometry approach, which runs in real-time on a CPU.
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3.2. Semi-Dense Depth Map Estimation

3.1.3 Method Outline

Our approach is partially motivated by the basic principle that for most real-time
applications, video information is abundant and cheap to come by. Therefore, the
computational budget should be spent such that the expected information gain is
maximized. Instead of reducing the images to a sparse set of feature observations
however, our method continuously estimates a semi-dense inverse depth map for
the current frame, i.e., a dense depth map covering all image regions with non-
negligible gradient (see Fig. 3.2). It is comprised of one inverse depth hypothesis
per pixel modeled by a Gaussian probability distribution. This representation still
allows to use whole-image alignment [66] to track new frames, while at the same
time greatly reducing computational complexity compared to volumetric methods.
The estimated depth map is propagated from frame to frame, and updated with
variable-baseline stereo comparisons. We explicitly use prior knowledge about a
pixel’s depth to select a suitable reference frame on a per-pixel basis, and to limit
the disparity search range.

The remainder of this paper is organized as follows: Section 3.2 describes the
semi-dense mapping part of the proposed method, including the derivation of the
observation accuracy as well as the probabilistic data fusion, propagation and regu-
larization steps. Section 3.3 describes how new frames are tracked using whole-image
alignment, and Sec. 3.4 summarizes the complete visual odometry method. A qual-
itative as well as a quantitative evaluation is presented in Sec. 3.5. We then give a
brief conclusion in Sec. 3.6.

3.2 Semi-Dense Depth Map Estimation

One of the key ideas proposed in this paper is to estimate a semi-dense inverse
depth map for the current camera image, which in turn can be used for estimating
the camera pose of the next frame. This depth map is continuously propagated
from frame to frame, and refined with new stereo depth measurements, which are
obtained by performing per-pixel, adaptive-baseline stereo comparisons. This allows
us to accurately estimate the depth both of close-by and far-away image regions. In
contrast to previous work that accumulates the photometric cost over a sequence of
several frames [88, 112], we keep exactly one inverse depth hypothesis per pixel that
we represent as Gaussian probability distribution.

This section is comprised of three main parts: Section 3.2.1 describes the stereo
method used to extract new depth measurements from previous frames, and how
they are incorporated into the prior depth map. In Sec. 3.2.2, we describe how
the depth map is propagated from frame to frame. In Sec. 3.2.3, we detail how we
partially regularize the obtained depth map in each iteration, and how outliers are
handled. Throughout this section, d denotes the inverse depth of a pixel.
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Figure 3.3: Variable Baseline Stereo. Reference image (left), three stereo images
at different baselines (right), and the respective matching cost functions. While a small
baseline (black) gives a unique, but imprecise minimum, a large baseline (red) allows for
a very precise estimate, but has many false minima.

3.2.1 Stereo-Based Depth Map Update

It is well known [90] that for stereo, there is a trade-off between precision and
accuracy (see Fig. 3.3). While many multiple-baseline stereo approaches resolve
this by accumulating the respective cost functions over many frames [43, 94], we
propose a probabilistic approach which explicitly takes advantage of the fact that
in a video, small-baseline frames are available before large-baseline frames.

The full depth map update (performed once for each new frame) consists of
the following steps: First, a subset of pixels is selected for which the accuracy of
a disparity search is sufficiently large. For this we use three intuitive and very
efficiently computable criteria, which will be derived in Sec. 3.2.1. For each selected
pixel, we then individually select a suitable reference frame, and perform a one-
dimensional disparity search. Propagated prior knowledge is used to reduce the
disparity search range when possible, decreasing computational cost and eliminating
false minima. The obtained inverse depth estimate is then fused into the depth map.

Reference Frame Selection

Ideally, the reference frame is chosen such that it maximizes the stereo accuracy,
while keeping the disparity search range as well as the observation angle sufficiently
small. As the stereo accuracy depends on many factors and because this selection
is done for each pixel independently, we employ the following heuristic: We use the
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current frame pixel’s “age”

-4.8 s -3.9 s -3.1 s -2.2 s

-1.2 s -0.8 s -0.5 s -0.4 s

Figure 3.4: Adaptive Baseline Selection. For each pixel in the new frame (top left),
a different stereo-reference frame is selected, based on how long the pixel was visible (top
right: the more yellow, the older the pixel.). Some of the reference frames are displayed
below, the red regions were used for stereo comparisons.

oldest frame the pixel was observed in, where the disparity search range and the
observation angle do not exceed a certain threshold (see Fig. 3.4). If a disparity
search is unsuccessful (i.e., no good match is found), the pixel’s “age” is increased,
such that subsequent disparity searches use newer frames where the pixel is likely
to be still visible.

Stereo Matching Method

We perform an exhaustive search for the pixel’s intensity along the epipolar line in
the selected reference frame, and then perform a sub-pixel accurate localization of
the matching disparity. If a prior inverse depth hypothesis is available, the search
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interval is limited by d±2σd, where d and σd denote the mean and standard deviation
of the prior hypothesis. Otherwise, the full disparity range is searched.

In our implementation, we use the SSD error over five equidistant points on the
epipolar line: While this significantly increases robustness in high-frequent image
regions, it does not change the purely one-dimensional nature of this search. Fur-
thermore, it is computationally efficient, as 4 out of 5 interpolated image values can
be re-used for each SSD evaluation.

Uncertainty Estimation

In this section, we use uncertainty propagation to derive an expression for the error
variance σ2

d on the inverse depth d. In general this can be done by expressing the
optimal inverse depth d∗ as a function of the noisy inputs – here we consider the
images I0, I1 themselves, their relative orientation ξ and the camera calibration in
terms of a projection function π1

d∗ = d(I0, I1, ξ, π). (3.1)

The error-variance of d∗ is then given by

σ2
d = JdΣJ

T
d , (3.2)

where Jd is the Jacobian of d, and Σ the covariance of the input-error. For more
details on covariance propagation, including the derivation of this formula, we refer
to [25]. For simplicity, the following analysis is performed for patch-free stereo, i.e.,
we consider only a point-wise search for a single intensity value along the epipolar
line.

For this analysis, we split the computation into three steps: First, the epipolar
line in the reference frame is computed. Second, the best matching position λ∗ ∈ R

along it (i.e., the disparity) is determined. Third, the inverse depth d∗ is computed
from the disparity λ∗. The first two steps involve two independent error sources:
the geometric error, which originates from noise on ξ and π and affects the first
step, and the photometric error, which originates from noise in the images I0, I1 and
affects the second step. The third step scales these errors by a factor, which depends
on the baseline.

Geometric disparity error. The geometric error is the error ǫλ on the disparity
λ∗ caused by noise on ξ and π. While it would be possible to model, propagate, and
estimate the complete covariance on ξ and π, we found that the gain in accuracy does
not justify the increase in computational complexity. We therefore use an intuitive

1In the linear case, this is the camera matrix K – in practice however, nonlinear distortion and
other (unmodeled) effects also play a role.
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approximation: Let the considered epipolar line segment L ⊂ R2 be defined by

L :=

{
l0 + λ

(
lx
ly

)
|λ ∈ S

}
, (3.3)

where λ is the disparity with search interval S, (lx, ly)
T the normalized epipolar

line direction and l0 the point corresponding to infinite depth. We now assume
that only the absolute position of this line segment, i.e., l0 is subject to isotropic
Gaussian noise ǫl. As in practice we keep the searched epipolar line segments short,
the influence of rotational error is small, making this a good approximation.

Intuitively, a positioning error ǫl on the epipolar line causes a small disparity error
ǫλ if the epipolar line is parallel to the image gradient, and a large one otherwise
(see Fig. 3.5). This can be mathematically derived as follows: The image constrains
the optimal disparity λ∗ to lie on a certain isocurve, i.e. a curve of equal intensity.
We approximate this isocurve to be locally linear, i.e., the gradient direction to be
locally constant. This gives

l0 + λ∗

(
lx
ly

)
!

= g0 + γ

(
−gy
gx

)
, γ ∈ R (3.4)

where g := (gx, gy) is the image gradient and g0 a point on the isoline. The influence
of noise on the image values will be derived in the next paragraph, hence at this
point g and g0 are assumed noise-free. Solving for λ gives the optimal disparity λ∗

in terms of the noisy input l0:

λ∗(l0) =
〈g, g0 − l0〉
〈g, l〉 (3.5)

Analogously to (3.2), the variance of the geometric disparity error can then be
expressed as

σ2
λ(ξ,π) = Jλ∗(l0)

(
σ2
l 0

0 σ2
l

)
JTλ∗(l0) =

σ2
l

〈g, l〉2 , (3.6)

where g is the normalized image gradient, l the normalized epipolar line direction
and σ2

l the variance of ǫl. Note that this error term solely originates from noise on
the relative camera orientation ξ and the camera calibration π, i.e., it is independent
of image intensity noise.

Photometric disparity error. Intuitively, this error encodes that small image
intensity errors have a large effect on the estimated disparity if the image gradient
is small, and a small effect otherwise (see Fig. 3.6). Mathematically, this relation
can be derived as follows. We seek the disparity λ∗ that minimizes the difference in
intensities, i.e.,

λ∗ = min
λ

(iref − Ip(λ))2, (3.7)
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Figure 3.5: Geometric Disparity Error. Influence of a small positioning error ǫl of
the epipolar line on the disparity error ǫλ. The dashed line represents the isocurve on
which the matching point has to lie. ǫλ is small if the epipolar line is parallel to the image
gradient (left), and a large otherwise (right).

where iref is the reference intensity, and Ip(λ) the image intensity on the epipolar
line at disparity λ. We assume a good initialization λ0 to be available from the
exhaustive search. Using a first-order Taylor approximation for Ip gives

λ∗(I) = λ0 + (iref − Ip(λ0)) g
−1
p , (3.8)

where gp is the gradient of Ip, that is image gradient along the epipolar line. For
clarity we only consider noise on iref and Ip(λ0); equivalent results are obtained in
the general case when taking into account noise on the image values involved in the
computation of gp. The variance of the photometric disparity error is given by

σ2
λ(I) = Jλ∗(I)

(
σ2
i 0

0 σ2
i

)
Jλ∗(I) =

2σ2
i

g2
p

, (3.9)

where σ2
i is the variance of the image intensity noise. The respective error originates

solely from noisy image intensity values, and hence is independent of the geometric
disparity error.

Pixel to inverse depth conversion. Using that, for small camera rotation, the
inverse depth d is approximately proportional to the disparity λ, the observation
variance of the inverse depth σ2

d,obs can be calculated using

σ2
d,obs = α2

(
σ2
λ(ξ,π) + σ2

λ(I)

)
, (3.10)

where the proportionality constant α – in the general, non-rectified case – is different
for each pixel, and can be calculated from

α :=
δd
δλ
, (3.11)

where δd is the length of the searched inverse depth interval, and δλ the length
of the searched epipolar line segment. While α is inversely linear in the length of
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Figure 3.6: Photometric Disparity Error. Noise ǫi on the image intensity values
causes a small disparity error ǫλ if the image gradient along the epipolar line is large
(left). If the gradient is small, the disparity error is magnified (right).

the camera translation, it also depends on the translation direction and the pixel’s
location in the image.

When using an SSD error over multiple points along the epipolar line – as our
implementation does – a good upper bound for the matching uncertainty is then
given by

σ2
d,obs-SSD ≤ α2

(
min{σ2

λ(ξ,π)}+ min{σ2
λ(I)}

)
, (3.12)

where the min goes over all points included in the SSD error.

Depth Observation Fusion

After a depth observation for a pixel in the current image has been obtained, we
integrate it into the depth map as follows: If no prior hypothesis for a pixel exists,
we initialize it directly with the observation. Otherwise, the new observation is
incorporated into the prior, i.e., the two distributions are multiplied (corresponding
to the update step in a Kalman filter): Given a prior distribution N (dp, σ

2
p) and a

noisy observation N (do, σ
2
o), the posterior is given by

N
(
σ2
pdo + σ2

odp

σ2
p + σ2

o

,
σ2
pσ

2
o

σ2
p + σ2

o

)
. (3.13)

Summary of Uncertainty-Aware Stereo

New stereo observations are obtained on a per-pixel basis, adaptively selecting for
each pixel a suitable reference frame and performing a one-dimensional search along
the epipolar line. We identified the three major factors which determine the accuracy
of such a stereo observation, i.e.,

• the photometric disparity error σ2
λ(ξ,π), depending on the magnitude of the

image gradient along the epipolar line,
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initialization after 8 it. after 3 it. after 3 it.
on lvl 3 on lvl 3 on lvl 2 on lvl 1

(80 × 60) (80 × 60) (160 × 120) (320 × 240)

Figure 3.7: Dense Tracking. Reference image I1(x) (top left) with associated semi-
dense inverse depth map (bottom left). The image in the top right shows the new frame
I2(x) without depth information. Middle: Intermediate steps while minimizing E(ξ) on
different pyramid levels. The top row shows the back-warped new frame I2(w(x, d, ξ)),
the bottom row shows the respective residual image I2(w(x, di, ξ)) − I1(x). The bottom
right image shows the final pixel-weights (black = small weight). Small weights mainly
correspond to newly occluded or disoccluded pixel.

• the geometric disparity error σ2
λ(I), depending on the angle between the

image gradient and the epipolar line (independent of the gradient magnitude),
and

• the pixel to inverse depth ratio α, depending on the camera translation,
the focal length and the pixel’s position.

These three simple-to-compute and purely local criteria are used to determine for
which pixel a stereo update is worth the computational cost. Further, the computed
observation variance is then used to integrate the new measurements into the existing
depth map.

3.2.2 Depth Map Propagation

We continuously propagate the estimated inverse depth map from frame to frame,
once the camera position of the next frame has been estimated. Based on the
inverse depth estimate d0 for a pixel, the corresponding 3D point is calculated and
projected into the new frame, providing an inverse depth estimate d1 in the new
frame. The hypothesis is then assigned to the closest integer pixel position – to
eliminate discretization errors, the sub-pixel accurate image location of the projected
point is kept, and re-used for the next propagation step.

For propagating the inverse depth variance, we assume the camera rotation to
be small. The new inverse depth d1 can then be approximated by

d1(d0) = (d−1
0 − tz)−1, (3.14)
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where tz is the camera translation along the optical axis. The variance of d1 is hence
given by

σ2
d1

= Jd1σ
2
d0
JTd1

+ σ2
p =

(
d1

d0

)4

σ2
d0

+ σ2
p, (3.15)

where σ2
p is the prediction uncertainty, which directly corresponds to the prediction

step in an extended Kalman filter. It can also be interpreted as keeping the variance
on the z-coordinate of a point fixed, i.e., setting σ2

z0
= σ2

z1
. We found that using

small values for σ2
p decreases drift, as it causes the estimated geometry to gradually

”lock” into place.

Collision handling. At all times, we allow at most one inverse depth hypothesis
per pixel: If two inverse depth hypothesis are propagated to the same pixel in the
new frame, we distinguish between two cases:

1. if they are statistically similar, i.e., lie within 2σ bounds, they are treated
as two independent observations of the pixel’s depth and fused according to
(3.13).

2. otherwise, the point that is further away from the camera is assumed to be
occluded, and is removed.

3.2.3 Depth Map Regularization

For each frame – after all observations have been incorporated – we perform one
regularization iteration by assigning each inverse depth value the average of the
surrounding inverse depths, weighted by their respective inverse variance. To pre-
serve sharp edges, if two adjacent inverse depth values are statistically different, i.e.,
are further away than 2σ, they do not contribute to one another. Note that the
respective variances are not changed during regularization to account for the high
correlation between neighboring hypotheses. Instead we use the minimal variance
of all neighboring pixel when defining the stereo search range, and as a weighting
factor for tracking (see Sec. 3.3).

Outlier removal. To handle outliers, we continuously keep track of the validity
of each inverse depth hypothesis in terms of the probability that it is an outlier, or
has become invalid (e.g., due to occlusion or a moving object). For each successful
stereo observation, this probability is decreased. It is increased for each failed stereo
search, if the respective intensity changes significantly on propagation, or when the
absolute image gradient falls below a given threshold.

If, during regularization, the probability that all contributing neighbors are out-
liers – i.e., the product of their individual outlier-probabilities – rises above a given

51



Chapter 3. Semi-Dense Visual Odometry for a Monocular Camera

Figure 3.8: Examples. Top: Camera images overlaid with the respective estimated
semi-dense inverse depth map. Bottom: 3D view of tracked scene. Note the versatility of
our approach: It accurately reconstructs and tracks through (outside) scenes with a large
depth-variance, including far-away objects like clouds , as well as (indoor) scenes with
little structure and close to no image corners / keypoints. More examples are shown in
the attached video.

threshold, the hypothesis is removed. Equally, if for an “empty” pixel this prod-
uct drops below a given threshold, a new hypothesis is created from the neighbors.
This fills holes arising from the forward-warping nature of the propagation step,
and dilates the semi-dense depth map to a small neighborhood around sharp image
intensity edges, which significantly increases tracking and mapping robustness.

3.3 Dense Tracking

Based on the inverse depth map of the previous frame, we estimate the camera pose
of the current frame using dense image alignment. Such methods have previously
been applied successfully (in real-time on a CPU) for tracking RGB-D cameras [66],
which directly provide dense depth measurements along with the color image. It is
based on the direct minimization of the photometric error

ri(ξ) := (I2(w(xi, di, ξ))− I1(xi))
2 , (3.16)

where the warp function w : Ω1 × R × R6 → Ω2 maps each point xi ∈ Ω1 in the
reference image I1 to the respective point w(xi, di, ξ) ∈ Ω2 in the new image I2. As
input it requires the 3D pose of the camera ξ ∈ R6 and uses the estimated inverse
depth di ∈ R for the pixel in I1. Note that no depth information with respect to I2

is required.

To increase robustness to self-occlusion and moving objects, we apply a weighting
scheme as proposed in [66]. Further, we add the variance of the inverse depth σ2

di
as

an additional weighting term, making the tracking resistant to recently initialized
and still inaccurate depth estimates from the mapping process. The final energy
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that is minimized is hence given by

E(ξ) :=
∑

i

α(ri(ξ))

σ2
di

ri(ξ), (3.17)

where α : R → R defines the weight for a given residual. Minimizing this error can
be interpreted as computing the maximum likelihood estimator for ξ, assuming in-
dependent noise on the image intensity values. The resulting weighted least-squares
problem is solved efficiently using an iteratively reweighted Gauss-Newton algorithm
coupled with a coarse-to-fine approach, using four pyramid levels. Figure 3.7 shows
an example of the tracking process. For further details on the minimization we refer
to [16].

3.4 System Overview

Tracking and depth estimation is split into two separate threads: One continuously
propagates the inverse depth map to the most recent tracked frame, updates it with
stereo-comparisons and partially regularizes it. The other simultaneously tracks
each incoming frame on the most recent available depth map. While tracking is
performed in real-time at 30Hz, one complete mapping iteration takes longer and is
hence done at roughly 15Hz – if the map is heavily populated, we adaptively reduce
the number of stereo comparisons to maintain a constant frame-rate. For stereo
observations, a buffer of up to 100 past frames is kept, automatically removing
those that are used least.

We use a standard, keypoint-based method to obtain the relative camera pose
between two initial frames, which are then used to initialize the inverse depth map
needed for tracking successive frames. From this point onward, our method is en-
tirely self-contained. In preliminary experiments, we found that in most cases our
approach is even able to recover from random or extremely inaccurate initial depth
maps, indicating that the keypoint-based initialization might become superfluous in
the future.

3.5 Results

We have tested our approach on both publicly available benchmark sequences, as
well as live, using a hand-held camera. Some examples are shown in Fig. 3.8. Note
that our method does not attempt to build a global map, i.e., once a point leaves
the field of view of the camera or becomes occluded, the respective depth value is
deleted. All experiments are performed on a standard consumer laptop with Intel
i7 quad-core CPU. In a preprocessing step, we rectify all images such that a pinhole
camera-model can be applied.
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Table 3.1: Results on RGB-D Benchmark.

position drift (cm/s) rotation drift (deg/s)
ours [66] [69] ours [66] [69]

fr2/xyz 0.6 0.6 8.2 0.33 0.34 3.27
fr2/desk 2.1 2.0 - 0.65 0.70 -

Figure 3.9: RGB-D Benchmark Sequence fr2/desk. Tracked camera trajectory
(black), the depth map of the first frame (blue), and the estimated depth map (gray-
scale) after a complete loop around the table. Note how well certain details such as the
keyboard and the monitor align.

3.5.1 RGB-D Benchmark Sequences

As basis for a quantitative evaluation and to facilitate reproducibility and easy
comparison with other methods, we use the TUM RGB-D benchmark [114]. For
tracking and mapping we only use the gray-scale images; for the very first frame
however the provided depth image is used as initialization.

Our method (like any monocular visual odometry method) fails in case of pure
camera rotation, as the depth of new regions cannot be determined. The achieved
tracking accuracy for two feasible sequences – that is, sequences which do not contain
strong camera rotation without simultaneous translation – is given in Table 3.1.
For comparison we also list the accuracy from (1) a state-of-the-art, dense RGB-D
odometry [66], and (2) a state-of-the-art, keypoint-based monocular SLAM system
(PTAM, [69]). We initialize PTAM using the built-in stereo initializer, and perform
a 7DoF (rigid body plus scale) alignment to the ground truth trajectory. Figure
3.9 shows the tracked camera trajectory for fr2/desk. We found that our method
achieves similar accuracy as [66] which uses the same dense tracking algorithm but
relies on the Kinect depth images. The keypoint-based approach [69] proves to be
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Figure 3.10: Additional Sequence. Estimated camera trajectory and ground truth
(dashed) for a long and challenging sequence. The complete sequence is shown in the
attached video.
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significantly less accurate and robust; it consistently failed after a few seconds for
the second sequence.

3.5.2 Additional Test Sequences

To analyze our approach in more detail, we recorded additional challenging sequences
with the corresponding ground truth trajectory in a motion capture studio. Figure
3.10 shows an extract from the video, as well as the tracked and the ground-truth
camera position over time. As can be seen from the figure, our approach is able
to maintain a reasonably dense depth map at all times and the estimated camera
trajectory matches closely the ground truth.

3.6 Conclusion

In this paper we proposed a novel visual odometry method for a monocular camera,
which does not require discrete features. In contrast to previous work on dense
tracking and mapping, our approach is based on probabilistic depth map estimation
and fusion over time. Depth measurements are obtained from patch-free stereo
matching in different reference frames at a suitable baseline, which are selected on
a per-pixel basis. To our knowledge, this is the first featureless monocular visual
odometry method which runs in real-time on a CPU. In our experiments, we showed
that the tracking performance of our approach is comparable to that of fully dense
methods without requiring a depth sensor.
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Chapter 4. LSD-SLAM: Large-Scale Direct Monocular SLAM

Abstract We propose a direct (feature-less) monocular SLAM algorithm
which, in contrast to current state-of-the-art regarding direct meth-
ods, allows to build large-scale, consistent maps of the environment.
Along with highly accurate pose estimation based on direct image align-
ment, the 3D environment is reconstructed in real-time as pose-graph
of keyframes with associated semi-dense depth maps. These are ob-
tained by filtering over a large number of pixelwise small-baseline stereo
comparisons. The explicitly scale-drift aware formulation allows the ap-
proach to operate on challenging sequences including large variations in
scene scale. Major enablers are two key novelties: (1) a novel direct
tracking method which operates on sim(3), thereby explicitly detecting
scale-drift, and (2) an elegant probabilistic solution to include the ef-
fect of noisy depth values into tracking. The resulting direct monocular
SLAM system runs in real-time on a CPU.

4.1 Introduction

Real-time monocular Simultaneous Localization and Mapping (SLAM) and 3D re-
construction have become increasingly popular research topics. Two major reasons
are (1) their use in robotics, in particular to navigate unmanned aerial vehicles
(UAVs) [14, 7, 41], and (2) augmented and virtual reality applications slowly mak-
ing their way into the mass-market.

One of the major benefits of monocular SLAM – and simultaneously one of the
biggest challenges – comes with the inherent scale-ambiguity: The scale of the world
cannot be observed and drifts over time, being one of the major error sources. The
advantage is that this allows to seamlessly switch between differently scaled environ-
ments, such as a desk environment indoors and large-scale outdoor environments.
Scaled sensors on the other hand, such as depth or stereo cameras, have a limited
range at which they can provide reliable measurements and hence do not provide
this flexibility.

4.1.1 Related Work

Feature-Based Methods.

The fundamental idea behind feature-based approaches (both filtering-based [69,
78] and keyframe-based [69]) is to split the overall problem – estimating geometric
information from images – into two sequential steps: First, a set of feature observa-
tions is extracted from the image. Second, the camera position and scene geometry
is computed as a function of these feature observations only.

While this decoupling simplifies the overall problem, it comes with an important
limitation: Only information that conforms to the feature type can be used. In
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4.1. Introduction

Figure 4.1: Large-Scale Direct Monocular SLAM. LSD-SLAM generates a consistent
global map, using direct image alignment and probabilistic, semi-dense depth maps instead
of keypoints. Top: Accumulated pointclouds of all keyframes of a medium-sized trajectory
(from a hand-held monocular camera), generated in real-time. Bottom: A selection of
keyframes with color-coded semi-dense inverse depth map. See also the supplementary
video.

particular, when using keypoints, information contained in straight or curved edges
– which especially in man-made environments make up a large part of the image
– is discarded. Several approaches have been made in the past to remedy this
by including edge-based [36, 68] or even region-based [27] features. Yet, since the
estimation of the high-dimensional feature space is tedious, they are rarely used in
practice. To obtain dense reconstructions, the estimated camera poses can be used
to subsequently reconstruct dense maps, using multiview stereo [15].

Direct Methods.

Direct visual odometry (VO) methods circumvent this limitation by optimizing the
geometry directly on the image intensities, which enables using all information in
the image. In addition to higher accuracy and robustness in particular in environ-
ments with little keypoints, this provides substantially more information about the
geometry of the environment, which can be very valuable for robotics or augmented
reality applications.

While direct image alignment is well-established for RGB-D or stereo sensors
[26, 65], only recently monocular direct VO algorithms have been proposed: In [88,
93, 112], accurate and fully dense depth maps are computed using a variational
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Chapter 4. LSD-SLAM: Large-Scale Direct Monocular SLAM

Figure 4.2: Variance Estimation. In addition to accurate, semi-dense 3D reconstruc-
tions, LSD-SLAM also estimates the associated uncertainty. From left to right: Accumu-
lated pointcloud thesholded with different maximum variance. Note how the reconstruc-
tion becomes significantly more dense, but at the same time includes more noise.

formulation, which however is computationally demanding and requires a state-of-
the-art GPU to run in real-time. In [9], a semi-dense depth filtering formulation was
proposed which significantly reduces computational complexity, allowing real-time
operation on a CPU and even on a modern smartphone [11]. By combining direct
tracking with keypoints, [41] achieves high frame-rates even on embedded platforms.
All these approaches however are pure visual odometries, they only locally track the
motion of the camera and do not build a consistent, global map of the environment
including loop-closures.

Pose Graph Optimization.

This is a well-known SLAM technique to build a consistent, global map: The world
is represented as a number of keyframes connected by pose-pose constraints, which
can be optimized using a generic graph optimization framework like g2o [73].

In [65], a pose graph based RGB-D SLAM method is proposed, which also in-
corporates geometric error to allow tracking through scenes with little texture. To
account for scale-drift arising in monocular SLAM, [109] proposed a keypoint-based
monocular SLAM system which represents camera poses as 3D similarity transforms
instead of rigid body movements.

4.1.2 Contributions and Outline

We propose a Large-Scale Direct monocular SLAM (LSD-SLAM) method, which
not only locally tracks the motion of the camera, but allows to build consistent,
large-scale maps of the environment (see Fig. 4.1 and 4.2). The method uses
direct image alignment coupled with filtering-based estimation of semi-dense
depth maps as originally proposed in [9]. The global map is represented as a pose
graph consisting of keyframes as vertices with 3D similarity transforms as edges,
elegantly incorporating changing scale of the environment and allowing to detect
and correct accumulated drift. The method runs in real-time on a CPU, and
as odometry even on a modern smartphone [11]. The main contributions of this
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paper are (1) a framework for large-scale, direct monocular SLAM, in particular
a novel scale-aware image alignment algorithm to directly estimate the similarity
transform ξ ∈ sim(3) between two keyframes, and (2) probabilistically consistent
incorporation of uncertainty of the estimated depth into tracking.

4.2 Preliminaries

In this chapter we give a condensed summary of the relevant mathematical con-
cepts and notation. In particular, we summarize the representation of 3D poses
as elements of Lie-Algebras (Sec. 4.2.1), derive direct image alignment as weighted
least-squares minimization on Lie-manifolds (Sec. 4.2.2), and briefly introduce prop-
agation of uncertainty (Sec. 4.2.3).

Notation.

We denote matrices by bold, capital letters (R) and vectors as bold, lower case letters
(ξ). The n’th row of a matrix is denoted by [·]n. Images I : Ω → R, the per-pixel
inverse depth map D : Ω → R+ and the inverse depth variance map V : Ω → R+

are written as functions, where Ω ⊂ R2 is the set of normalized pixel coordinates,
i.e., they include the intrinsic camera calibration. Throughout the paper we use d
to denote the inverse of the depth z of a point, i.e., d = z−1.

4.2.1 3D Rigid Body and Similarity Transformations

3D Rigid Body Transformations.

A 3D rigid body transform G ∈ SE(3) denotes rotation and translation in 3D, i.e.,
is defined by

G =

(
R t
0 1

)
with R ∈ SO(3) and t ∈ R

3. (4.1)

During optimization, a minimal representation for the camera pose is required,
which is given by the corresponding element ξ ∈ se(3) of the associated Lie-algebra.
Elements are mapped to SE(3) by the exponential map G = exp

se(3)(ξ), its inverse
being denoted by ξ = logSE(3)(G). With a slight abuse of notation, we consistently
use elements of se(3) to represent poses, which we directly write as vector ξ ∈ R6.
The transformation moving a point from frame i to frame j is written as ξji. For
convenience, we define the pose concatenation operator ◦ : se(3)× se(3)→ se(3) as

ξki := ξkj ◦ ξji := logSE(3)

(
exp

se(3)(ξkj) · exp
se(3)(ξji)

)
. (4.2)
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Further, we define the 3D projective warp function ω, which projects an image
point p and its inverse depth d into a by ξ transformed camera frame

ω(p, d, ξ) :=



x′/z′

y′/z′

1/z′


 with




x′

y′

z′

1


 := exp

se(3)(ξ)




px/d
py/d
1/d
1


 . (4.3)

3D Similarity Transformations.

A 3D similarity transform S ∈ Sim(3) denotes rotation, scaling and translation, i.e.,
is defined by

S =

(
sR t
0 1

)
with R ∈ SO(3), t ∈ R

3 and s ∈ R
+. (4.4)

As for rigid body transformations, a minimal representation is given by elements
of the associated Lie-algebra ξ ∈ sim(3), which now have an additional degree of
freedom, that is ξ ∈ R7. The exponential and logarithmic map, pose concatenation
and a projective warp function ωs can be defined analogously to the se(3) case, for
further details see [109].

4.2.2 Weighted Gauss-Newton Optimization on Lie-
Manifolds

Two images are aligned by Gauss-Newton minimization of the photometric error

E(ξ) =
∑

i

(Iref(pi)− I(ω(pi, Dref(pi), ξ)))2

︸ ︷︷ ︸
=:r2

i
(ξ)

, (4.5)

which gives the maximum-likelihood estimator for ξ assuming i.i.d. Gaussian resid-
uals. We use a left-compositional formulation: Starting with an initial estimate
ξ(0), in each iteration a left-multiplied increment δξ(n) is computed by solving for
the minimum of a Gauss-Newton second-order approximation of E:

δξ(n) = −(JTJ)−1JT r(ξ(n)) with J =
∂r(ǫ ◦ ξ(n))

∂ǫ

∣∣∣∣∣
ǫ=0

, (4.6)

where J is the derivative of the stacked residual vector r = (r1, . . . , rn)T with re-
spect to a left-multiplied increment, and JTJ the Gauss-Newton approximation of
the Hessian of E. The new estimate is then obtained by multiplication with the
computed update

ξ(n+1) = δξ(n) ◦ ξ(n). (4.7)
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In order to be robust to outliers arising e.g. from occlusions or reflections, dif-
ferent weighting-schemes [65] have been proposed, resulting in an iteratively re-
weighted least-squares problem: In each iteration, a weight matrix W = W(ξ(n)) is
computed which down-weights large residuals. The iteratively solved error function
then becomes

E(ξ) =
∑

i

wi(ξ)r2
i (ξ), (4.8)

and the update is computed as

δξ(n) = −(JTWJ)−1JTWr(ξ(n)). (4.9)

Assuming the residuals to be independent, the inverse of the Hessian from the
last iteration (JTWJ)−1 is an estimate for the covariance Σξ of a left-multiplied
error onto the final result, that is

ξ(n) = ǫ ◦ ξtrue with ǫ ∼ N (0,Σξ). (4.10)

In practice, the residuals are highly correlated, such that Σξ is only a lower bound
- yet it contains valuable information about the correlation between noise on the
different degrees of freedom. Note that we follow a left-multiplication convention,
equivalent results can be obtained using a right-multiplication convention. However,
the estimated covariance Σξ depends on the multiplication order – when used in a
pose graph optimization framework, this has to be taken into account. The left-
multiplication convention used here is consistent with [109], while e.g. the default
type-implementation in g2o [73] assumes right-multiplication.

4.2.3 Propagation of Uncertainty

Propagation of uncertainty is a statistical tool to derive the uncertainty of the output
of a function f(X), caused by uncertainty on its input X. Assuming X to be Gaus-
sian distributed with covariance ΣX, the covariance of f(X) can be approximated
(using the Jacobian Jf of f) by

Σf ≈ JfΣXJTf . (4.11)

4.3 Large-Scale Direct Monocular SLAM

We start by giving an overview of the complete algorithm in Sec. 4.3.1, and briefly
introduce the representation for the global map in Sec. 4.3.2. The three main com-
ponents of the algorithm are then described in Sec. 4.3.3 (tracking of new frames),
Sec. 4.3.4 (depth map estimation), Sec. 4.3.5 (keyframe-to-keyframe tracking) and
finally Sec. 4.3.6 (map optimization).
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Figure 4.3: Algorithm Overview. Overview over the complete LSD-SLAM algorithm.

4.3.1 The Complete Method

The algorithm consists of three major components: tracking, depth map esti-
mation and map optimization as visualized in Fig. 4.3:

• The tracking component continuously tracks new camera images. That is, it
estimates their rigid body pose ξ ∈ se(3) with respect to the current keyframe,
using the pose of the previous frame as initialization.

• The depth map estimation component uses tracked frames to either refine
or replace the current keyframe. Depth is refined by filtering over many per-
pixel, small-baseline stereo comparisons coupled with interleaved spatial regu-
larization as originally proposed in [9]. If the camera has moved too far, a new
keyframe is initialized by projecting points from existing, close-by keyframes
into it.

• Once a keyframe is replaced as tracking reference – and hence its depth map
will not be refined further – it is incorporated into the global map by the map
optimization component. To detect loop closures and scale-drift, a similar-
ity transform ξ ∈ sim(3) to close-by existing keyframes (including its direct
predecessor) is estimated using scale-aware, direct sim(3)-image alignment.

Initialization.

To bootstrap the LSD-SLAM system, it is sufficient to initialize a first keyframe
with a random depth map and large variance. Given sufficient translational camera
movement in the first seconds, the algorithm “locks” to a certain configuration, and
after a couple of keyframe propagations converges to a correct depth configuration.
Some examples are shown in the attached video. A more thorough evaluation of
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4.3. Large-Scale Direct Monocular SLAM

(a) reference image (b) rotation (c) z trans. (d) x trans.

Figure 4.4: Statistic normalization. (a) reference image. (b-d): tracked images and
inverse variance σ−2

rp
of the residual. For pure rotation, depth noise has no effect on the

residual noise and hence all normalization factors are the same. For z translation depth
noise has no effect for pixels in the center of the image, while for x translation it only
affects residuals with intensity-gradient in x direction.

this ability to converge without dedicated initial bootstrapping is outside the scope
of this paper, and remains for future work.

4.3.2 Map Representation

The map is represented as a pose graph of keyframes: Each keyframe Ki consists
of a camera image Ii : Ωi → R, an inverse depth map Di : ΩDi → R+, and the
variance of the inverse depth Vi : ΩDi → R+. Note that the depth map and variance
are only defined for a subset of pixels ΩDi ⊂ Ωi, containing all image regions in the
vicinity of sufficiently large intensity gradient, hence semi-dense. Edges Eji between
keyframes contain their relative alignment as similarity transform ξji ∈ sim(3), as
well as the corresponding covariance matrix Σji.

4.3.3 Tracking new Frames: Direct se(3) Image Alignment

Starting from an existing keyframe Ki = (Ii, Di, Vi), the relative 3D pose ξji ∈ se(3)
of a new image Ij is computed by minimizing the variance-normalized photometric
error

Ep(ξji) =
∑

p∈ΩDi

∥∥∥∥∥∥
r2
p(p, ξji)

σ2
rp(p,ξji)

∥∥∥∥∥∥
δ

(4.12)

with rp(p, ξji) := Ii(p)− Ij(ω(p, Di(p), ξji)) (4.13)

σ2
rp(p,ξji)

:= 2σ2
I +

(
∂rp(p, ξji)

∂Di(p)

)2

Vi(p) (4.14)

where ‖ · ‖δ is the Huber norm
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‖r2‖δ :=




r2

2δ
if |r| ≤ δ

|r| − δ
2

otherwise.
(4.15)

applied to the normalized residual. The residual’s variance σ2
rp(p,ξji)

is computed us-
ing covariance propagation as described in Sec. 4.2.3, and utilizing the inverse depth
variance Vi. Further, we assume Gaussian image intensity noise σ2

I . Minimization
is performed using iteratively re-weighted Gauss-Newton optimization as described
in Sec. 4.2.2.

In contrast to previous direct methods, the proposed formulation explicitly takes
into account varying noise on the depth estimates: This is of particular relevance
as for direct, monocular SLAM, this noise differs significantly for different pixels,
depending on how long they were visible – which is in contrast to approaches working
on RGB-D data, for which the uncertainty on the inverse depth is approximately
constant. Figure 4.4 shows how this weighting behaves for different types of motion.
Note that no depth information for the new camera image is available – therefore,
the scale of the new image is not defined, and the minimization is performed on
se(3).

4.3.4 Depth Map Estimation

Keyframe Selection.

If the camera moves too far away from the existing map, a new keyframe is created
from the most recent tracked image. We threshold a weighted combination of relative
distance and angle to the current keyframe:

dist(ξji) := ξTjiWξji (4.16)

where W is a diagonal matrix containing the weights. Note that, as described in the
following section, each keyframe is scaled such that its mean inverse depth is one.
This threshold is therefore relative to the current scale of the scene, and ensures
sufficient possibilities for small-baseline stereo comparisons.

Depth Map Creation.

Once a new frame is chosen to become a keyframe, its depth map is initialized by
projecting points from the previous keyframe into it, followed by one iteration of
spatial regularization and outlier removal as proposed in [9]. Afterwards, the depth
map is scaled to have a mean inverse depth of one - this scaling factor is directly
incorporated into the sim(3) camera pose. Finally, it replaces the previous keyframe
and is used for tracking subsequent new frames.

66



4.3. Large-Scale Direct Monocular SLAM

(a) camera images I (d) normalized photometric residual rp/σrp

(b) estimated inverse depth maps D (e) normalized depth residual rd/σrd

(c) inverse depth variance V (f) robust Huber weights

Figure 4.5: Direct keyframe alignment on sim(3). (a)-(c): two keyframes with
associated depth and depth variance. (d)-(f): photometric residual, depth residual and
Huber weights, before minimization (left), and after minimization (right).

Depth Map Refinement.

Tracked frames that do not become a keyframe are used to refine the current
keyframe: A high number of very efficient small-baseline stereo comparisons is per-
formed for image regions where the expected stereo accuracy is sufficiently large, as
described in [9]. The result is incorporated into the existing depth map, thereby re-
fining it and potentially adding new pixels – this is done using the filtering approach
proposed in [9].

4.3.5 Constraint Acquisition: Direct sim(3) Image Align-
ment

Direct Image Alignment on sim(3).

Monocular SLAM is – in contrast to RGB-D or Stereo-SLAM – inherently scale-
ambivalent, i.e., the absolute scale of the world is not observable. Over long tra-
jectories this leads to scale-drift, which is one of the major sources of error [109].
Further, all distances are only defined up to scale, which causes threshold-based out-
lier rejection or parametrized robust kernels (e.g. Huber) to be ill-defined. We solve
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Figure 4.6: Two scenes with high scale variation. Camera frustums are displayed
for each keyframe with their size corresponding to the keyframe’s scale.

this by using the inherent correlation between scene depth and tracking accuracy:
The depth map of each created keyframe is scaled such that the mean inverse depth
is one. In return, edges between keyframes are estimated as elements of sim(3),
elegantly incorporating the scaling difference between keyframes, and, in particular
for large loop-closures, allowing an explicit detection of accumulated scale-drift.

For this, we propose a novel method to perform direct, scale-drift aware image
alignment on sim(3), which is used to align two differently scaled keyframes. In
addition to the photometric residual rp, we incorporate a depth residual rd which
penalizes deviations in inverse depth between keyframes, allowing to directly es-
timate the scaled transformation between them. The total error function that is
minimized becomes

E(ξji) :=
∑

p∈ΩDi

∥∥∥∥∥∥
r2
p(p, ξji)

σ2
rp(p,ξji)

+
r2
d(p, ξji)

σ2
rd(p,ξji)

∥∥∥∥∥∥
δ

, (4.17)

where the photometric residual r2
p and σ2

rp
is defined as in (4.13) - (4.14). The depth

residual and its variance is computed as

rd(p, ξji) := [p′]3 −Dj([p
′]1,2) (4.18)

σ2
rd(p,ξji)

:= Vj([p
′]1,2)

(
∂rd(p, ξji)

∂Dj([p′]1,2)

)2

+ Vi(p)

(
∂rd(p, ξji)

∂Di(p)

)2

, (4.19)

where p′ := ωs(p, Di(p), ξji) denotes the transformed point. Note that the Huber
norm is applied to the sum of the normalized photometric and depth residual –
which accounts for the fact that if one is an outlier, the other typically is as well.
Note that for tracking on sim(3), the inclusion of the depth error is required as
the photometric error alone does not constrain the scale. Minimization is performed
analogously to direct image alignment on se(3) using the iteratively re-weighted
Gauss-Newton algorithm (Sec. 4.2.2). In practice, sim(3) tracking is computation-
ally only marginally more expensive than tracking on se(3), as only little additional
computations are needed1.

1We approximate the gradient of the depth map to be zero, which significantly speeds up the
computation
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Constraint Search.

After a new keyframe Ki is added to the map, a number of possible loop closure
keyframes Kj1 , ...,Kjn is collected: We use the closest ten keyframes, as well as
a suitable candidate proposed by an appearance-based mapping algorithm [47] to
detect large-scale loop closures. To avoid insertion of false or falsely tracked loop
closures, we then perform a reciprocal tracking check: For each candidate Kjk we
independently track ξjki and ξijk . Only if the two estimates are statistically similar,
i.e., if

e(ξjki, ξijk) := (ξjki ◦ ξijk)T
(
Σjki + AdjjkiΣijkAdjTjki

)−1
(ξjki ◦ ξijk) (4.20)

is sufficiently small, they are added to the global map. For this, the adjoint Adjjki
is used to transform Σijk into the correct tangent space.

Convergence Radius for sim(3) Tracking.

An important limitation of direct image alignment lies in the inherent non-convexity
of the problem, and hence the need for a sufficiently accurate initialization. While
for the tracking of new camera frames a sufficiently good initialization is available
(given by the pose of the previous frame), this is not the case when finding loop
closure constraints, in particular for large loop closures.

One solution for this consists in using a very small number of keypoints to com-
pute a better initialization: Using the depth values from the existing inverse depth
maps, this requires aligning two sets of 3D points with known correspondences,
which can be done efficiently in closed form using e.g. the method of Horn [55].
Still, we found that in practice the convergence radius is sufficiently large even for
large-scale loop closures - in particular we found that the convergence radius can be
substantially increased by the following measures:

• Efficient Second Order Minimization (ESM) [19]: While our results con-
firm previous work [71] in that ESM does not significantly increase the preci-
sion of dense image alignment, we observed that it does slightly increase the
convergence radius.

• Coarse-to-Fine Approach: While a pyramid approach is commonly used
for direct image alignment, we found that starting at a very low resolution
of only 20 × 15 pixels – much smaller than usually done – already helps to
increase the convergence radius.

An evaluation of the effect of these measures is given in Sec. 4.4.3.

4.3.6 Map Optimization

The map, consisting of a set of keyframes and tracked sim(3)-constraints, is contin-
uously optimized in the background using pose graph optimization [73]. The error
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Figure 4.7: Large Loop closure. Loop closure for a long and challenging outdoor
trajectory (after the loop closure on the left, before on the right). Also shown are three
selected close-ups of the generated pointcloud, and semi-dense depth maps for selected
keyframes.

function that is minimized is – in accordance with the left-multiplication convention
from Sec. 4.2.2 – defined by (W defining the world frame)

E(ξW1 . . . ξWn) :=
∑

(ξji,Σji)∈E

(ξji ◦ ξ−1
Wi ◦ ξWj)

T
Σ

−1
ji (ξji ◦ ξ−1

Wi ◦ ξWj). (4.21)

4.4 Results

We evaluate LSD-SLAM both quantitatively on publicly available datasets [51, 114]
as well as on challenging outdoor trajectories, recorded with a hand-held monocular
camera. Some of the evaluated trajectories are shown in full in the supplementary
video.

4.4.1 Qualitative Results on Large Trajectories

We tested the algorithm on several long and challenging trajectories, which include
many camera rotations, large scale changes and major loop closures. Figure 4.7
shows a roughly 500 m long trajectory which takes 6 minutes just before and after
the large loop closure is found. Figure 4.8 shows a challenging trajectory with large
variations in scene depth, which also includes a loop closure.
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Figure 4.8: Loop closure with explicit scale correction. Accumulated pointcloud
of a trajectory with large scale variation, including views with an average inverse depth
of less than 20 cm to more than 10m. After the loop closure (top-right), the geometry is
consistently aligned, while before (top-left) parts of the scene existed twice, at different
scales. The bottom row shows different close-ups of the scene. The proposed scale-aware
formulation allows to accurately estimate both fine details and large-scale geometry – this
flexibility is one of the major benefits of a monocular approach.

4.4.2 Quantitative Evaluation

We evaluate LSD-SLAM on the publicly available RGB-D dataset [114]. Note that
for monocular SLAM this is a very challenging benchmark, as it contains fast rota-
tional movement, strong motion blur and rolling shutter artifacts. We use the very
first depth map to bootstrap the system and get the correct initial scale. Table 4.9
shows the resulting absolute trajectory error, and compares it to other approaches.

4.4.3 Convergence Radius for sim(3) Tracking

We evaluate the convergence radius on two exemplary sequences, the result is shown
in Fig. 4.10. Even though direct image alignment is non-convex, we found that with
the steps proposed in Sec. 4.3.5, surprisingly large camera movements can be tracked.
It can also be observed that these measures only increase the convergence radius,
and have no notable effect on tracking precision.

4.5 Conclusion

We have presented a novel direct (feature-less) monocular SLAM algorithm which
we call LSD-SLAM, which runs in real-time on a CPU. In contrast to existing direct
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LSD-SLAM (#KF) [9] [69] [65] [37]

fr2/desk 4.52 (116) 13.50 x 1.77 9.5
fr2/xyz 1.47 (38) 3.79 24.28 1.18 2.6
sim/desk 0.04 (39) 1.53 - 0.27 -
sim/slowmo 0.35 (12) 2.21 - 0.13 -

Figure 4.9: Quantitative Evaluation. Results on the TUM RGB-D benchmark [114],
and two simulated sequences from [51], measured as absolute trajectory RMSE (cm). For
LSD-SLAM, we also show the number of keyframes created. ’x’ denotes tracking failure,
’-’ no available data. For comparison we show respective results from semi-dense mono-
VO [9], keypoint-based mono-SLAM [69], direct RGB-D SLAM [65] and keypoint-based
RGB-D SLAM [37]. Note that [65] and [37] use depth information from the sensor, while
the others do not.

approaches – which are all pure odometries – it maintains and tracks on a global
map of the environment, which contains a pose-graph of keyframes with associated
probabilistic semi-dense depth maps. Major components of the proposed method are
two key novelties: (1) a direct method to align two keyframes on sim(3), explicitly
incorporating and detecting scale-drift and (2) a novel, probabilistic approach to
incorporate noise on the estimated depth maps into tracking. Represented as point
clouds, the map gives a semi-dense and highly accurate 3D reconstruction of the
environment. We experimentally showed that the approach reliably tracks and maps
even challenging hand-held trajectories with a length of over 500 m, in particular
including large variations in scale within the same sequence (average inverse depth of
less than 20 cm to more than 10 m) and large rotations – demonstrating its versatility,
robustness and flexibility.
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Figure 4.10: Convergence Radius Analysis. Convergence radius and accuracy of
sim(3) direct image alignment with and without ESM minimization (indicated by light /
dark) for a different number of pyramid levels (color). All frames of the respective sequence
are tracked on frame 300 (left) and frame 500 (right), using the identity as initialization.
The bottom plots show for which frames tracking succeeds; the top plots show the final
translational error. ESM and more pyramid levels clearly increase the convergence radius,
however these measures have no notable effect on tracking precision: if tracking converges,
it almost always converges to the same minimum.
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Authors Thomas Schöps2 schoepst@inf.ethz.ch

Jakob Engel1 engelj@in.tum.de

Daniel Cremers1 cremers@tum.de
1 Technical University Munich
2 ETH Zürich
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Chapter 5. Semi-Dense Visual Odometry for AR on a Smartphone

Abstract We present a direct monocular visual odometry system which
runs in real-time on a smartphone. Being a direct method, it tracks
and maps on the images themselves instead of extracted features such as
keypoints. New images are tracked using direct image alignment, while
geometry is represented in the form of a semi-dense depth map. Depth
is estimated by filtering over many small-baseline, pixel-wise stereo com-
parisons. This leads to significantly less outliers and allows to map and
use all image regions with sufficient gradient, including edges. We show
how a simple world model for AR applications can be derived from semi-
dense depth maps, and demonstrate the practical applicability in the
context of an AR application in which simulated objects can collide with
real geometry.

5.1 Introduction

Estimating the movement of a monocular camera and the 3D structure of the envi-
ronment is amongst the most prominent challenges in computer vision. Commonly
referred to as monocular SLAM or structure from motion, it is a key enabler for
many augmented reality applications: only if the precise pose of the camera is avail-
able in real-time, virtual objects can be rendered into the scene as if they were part
of it. Further, knowledge about the geometry of the scene allows virtual objects to
interact with it: in an augmented reality game, game characters can collide with,
be occluded by or be placed on top of real obstacles. To assist with furnishing or
re-decorating a room, a piece of furniture could be reconstructed from a video taken
by a smartphone, and virtually rendered into different locations in the room. Figure
5.1 shows an example AR application realized on top of our direct Visual Odometry
(VO) system.

Apart from marker based methods [40, 120, 121] – which allow for precise and fast
camera pose estimation at the cost of having to manually place one or more physical
markers into the scene – state-of-the-art monocular SLAM methods generally oper-
ate on features. While this allows to estimate the camera movement in real-time on
mobile platforms [70, 85], the resulting feature based maps hardly provide sufficient
information about the 3D geometry of the scene for physical interaction.

At the same time, recent advances in computer vision have shown the high
potential of direct methods for monocular SLAM [9, 41, 88, 93]: instead of operating
on features, these methods perform both tracking and mapping directly on the
image intensity values. Fundamentally different from feature based methods, direct
methods not only allow for fast, sub-pixel accurate camera tracking, but also provide
substantially more information about the 3D structure of the environment, are less
susceptible to outliers, and more robust in environments with little texture [9].
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5.1. Introduction

Figure 5.1: Semi-Dense VO on a smartphone. From left to right: AR demo appli-
cation with simulated car. Corresponding estimated semi-dense depth map. Estimated
dense collision mesh, fixed and shown from a different perspective. Photo of running
system. The attached video shows the system in action.

5.1.1 Related Work

In this section we give an overview over existing monocular SLAM and VO methods,
divided into feature based and direct methods. While there exists a large number
of feature based methods for mobile phones, existing direct methods are compu-
tationally expensive and require a powerful GPU to run in real-time. Figure 5.2
summarizes the main differences between feature based and direct methods.

Feature Based. The basic idea behind features is to split the overall problem
– estimating geometric information from images – into two separate, sequential
steps: First, a set of feature observations is extracted from the image, typically
independently of one another. This can be done using a large variety of methods,
including different corner detectors and descriptors, as well as fast matching methods
and outlier detection schemes like RANSAC. Second, camera position and scene
geometry are computed as a function of these feature observations only. Again,
there exists a variety of methods to do this, including bundle adjustment based
approaches [69] or filtering based approaches [31, 78].

While decoupling image based (photometric) estimation from subsequent geo-
metric estimation simplifies the overall problem, it comes with an important lim-
itation: Only information that conforms to the feature type and parametrization
can be used. In particular, when using keypoints, information contained in edges is
discarded.

Today, there are several keypoint based monocular VO and SLAM methods
which run in real-time on mobile devices [70, 78]. In order to obtain a denser 3D re-
construction, one approach is to perform two-frame or multi-frame stereo on selected
frames, where the camera pose is obtained from a full feature based SLAM system
running in the background [115]. However – even though the computed dense depth
maps are often more accurate and precise than the feature based map, they cannot
directly be fed back into the SLAM system running in the background, thereby
discarding valuable information.

Direct. Direct approaches circumvent these limitations by directly optimizing
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Feature-Based

Extract & Match
 Features

(SIFT / SURF / ...)

Track:
min. reprojection error

(point distances)

Map:
est. feature-parameters
(3D points / normals)

abstract image to feature observations

Track:
min. photometric error
(intensity differences)

Map:
est. per-pixel depth

(semi-dense depth map)

keep full images (no abstraction)

Input
Images

Direct
Input

Images

Figure 5.2: Semi-Dense vs. Keypoints. Feature based methods abstract images to
feature observations and discard all other information. In contrast, the proposed direct
approach maps and tracks directly on image intensities: this allows to (1) use all informa-
tion, including e.g. edges and (2) directly obtain rich, semi-dense information about the
geometry of the scene.

the camera poses and scene geometry on the raw images. This allows to use all
information in the image, leading to higher accuracy and robustness in particular in
indoor environments with only few features. Early direct or semi-direct approaches
were based on scene representations by sets of planar patches: [106] presents such
a system which simultaneously estimates the motion, scene structure and illumina-
tion. [61] also combines tracking and reconstruction and especially discusses local
optimums in the error function.

Images are tracked by direct minimization of the per-pixel photometric error (see
Sec. 5.2.1), which is well established for tracking RGB-D or stereo sensors [26, 65].
In a monocular setting, the required per-pixel depth values are in turn computed
from stereo on previous frames: in [9], a pixel-wise filtering formulation was pro-
posed, which fuses information from many small-baseline stereo comparisons. This
approach allows to obtain accurate and precise semi-dense depth maps in real-time
on a CPU. It has recently been extended to LSD-SLAM, a large-scale direct monoc-
ular SLAM system [4] including loop-closures. Another approach is to compute
fully dense depth maps using a variational formulation [88, 93, 112], which how-
ever is computationally demanding and requires a state-of-the-art GPU to run in
real-time. A common feature of direct methods is their inherent parallelism: as
many operations are defined on a per-pixel basis, they can ideally be parallelized
using GPGPUs or SIMD (Single Instruction Multiple Data) instructions, achieving
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Figure 5.3: Examples of semi-dense depth maps. Estimated in real-time on a
smartphone. See also the attached video.

considerable speed-ups in practice.

5.1.2 Contributions and Outline

In this paper we present a direct monocular VO system based on [9] which runs in
real-time on a smartphone. In addition to accurately computing the camera pose at
over 30 Hz, the proposed method provides rich information about the environment
in the form of a semi-dense depth map of the currently visible scene. In particu-
lar we (1) describe modifications required to run the algorithm in real-time on a
smartphone, and (2) propose a method to derive a dense world model suitable for
basic physical interaction of simulated objects with the real world. We demonstrate
the capabilities of the proposed approach with a simple augmented reality game,
in which a simulated car drives through the environment, and can collide with real
obstacles in the scene.

The paper is organized as follows: We describe the proposed semi-dense, direct
VO method in Sec. 5.2. In particular, in Sec. 5.2.3, we describe the steps required
for real-time performance on a smartphone. Following this, we show how collision
meshes are computed from the semi-dense depth map in Sec. 5.3, and how they are
used in a simple AR application. Finally, we qualitatively evaluate the resulting
system in different environments in Sec. 5.4.
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5.2 Semi-Dense Direct Visual Odometry

The proposed monocular VO algorithm does not use features at any stage of the
algorithm, but instead directly operates on the raw intensity images: The map is
represented as a semi-dense inverse depth map, which contains a Gaussian probabil-
ity distribution (mean and variance) for the inverse depth of a subset of pixels, hence
“semi-dense”. An example is shown in Fig. 5.3: pixels that have a depth hypothesis
are shown in color (encoding the depth).

The whole system is divided into two parts (see Fig. 5.4), running in parallel:
tracking and mapping. In Sec. 5.2.1, we describe tracking using direct image
alignment. In Sec. 5.2.2, we present the mapping part which simultaneously esti-
mates and propagates the depth map. The system is closely based on the approach
by Engel et al. [9] for real-time operation on a consumer laptop.

Notation. We represent an image as function I : Ω→ R. Similarly, we represent
the inverse depth map and inverse depth variance map as functions D : ΩD → R+

and V : ΩD → R+, where ΩD contains all pixels which have a valid depth hypothesis.
Note that D and V denote mean and variance of the inverse depth, as this approx-
imates the uncertainty of stereo much better than assuming a Gaussian-distributed
depth.

Initialization. We initialize the map with random depth values and large variance
for the first frame. When moving the camera slowly and in parallel to the image
plane, the algorithm (running normally) typically locks onto a consistent depth
configuration and quickly converges to a valid map. This is in contrast to [9], in
which a keypoint based initializer was used. While the process is successful in most
cases, we observed one distinct failure case which results in an inverse estimate of
both the depth map and the camera motion, which is further discussed in [61]. A
numerical evaluation of the initialization success and convergence rate is given in
Sec. 5.4.

5.2.1 Tracking

The pose of new frames is estimated using direct image alignment: given the current
map {IM , DM , VM}, the relative pose ξ ∈ SE(3) of a new frame I is obtained by
directly minimizing the photometric error

E(ξ) :=
∑

x∈ΩDM

‖IM(x)− I(ω(x, DM(x), ξ))‖δ , (5.1)

where ω : ΩDM
×R× SE(3)→ Ω projects a point from the reference image into the

new frame, and ‖ · ‖δ is the Huber norm to account for outliers. Global brightness
changes due to auto-shutter typically have little effect, as we only use image re-
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Tracking:
minimize photometric error
(at 30Hz on a smartphone)

Input Video:
320x240 at 30Hz

Mapping:
estimate semi-dense depth map

(at ~15Hz on a smartphone)

● propagation

● update

● regularization

Map: Semi-Dense Inverse Depth Map
Gaussian probability distribution of the inverse depth for all 

pixels with sufficient intensity gradient (colored)

inverse depth inv. depth variance original image

Figure 5.4: Semi-Dense Visual Odometry. Tracking and mapping are performed in
parallel, operating on a semi-dense inverse depth map as central data structure. It contains
an inverse depth hypothesis for all pixels close to sufficiently strong image gradient. It
is continuously propagated to new frames, updated with new stereo observations and
spatially regularized. More details on the respective steps are given in Sec. 5.2.
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320×240 160×120 80×60 40×30 20×15

39% 46% 56% 71% 87%

Figure 5.5: Image Pyramid. Top: intensity image Il, middle: color-coded inverse depth
Dl, bottom: inverse depth variance Vl. The given percentage corresponds to the density,
i.e., the percentage of pixels that have a depth value. The described down-sampling
strategy causes the depth maps to become significantly denser on higher pyramid levels.

gions with strong gradient. The minimum is computed using iteratively re-weighted
Levenberg-Marquardt minimization, as described in [4].

Image Pyramid. To handle larger inter-frame motions, we use a pyramid scheme:
Each new frame is first tracked on a very low resolution image and depth map, the
tracked pose is then used as initialization for the next higher resolution. Depth maps
are down-sampled by factors of two, using a weighted average of the inverse depth.
To account for the strong correlation between neighbouring pixels, we average the
information (inverse variance), giving

Dl+1(x) :=

∑
x′∈Ωx

Dl(x
′)

Vl(x′)∑
x′∈Ωx

1
Vl(x′)

(5.2)

Vl+1(x) :=
|Ωx|∑

x′∈Ωx

1
Vl(x′)

(5.3)

where l is the index of the pyramid level. Ωx denotes the set of valid pixels (i.e. with
depth value) contained in pixel x at the next higher resolution.

Note that a pixel at low resolution has an associated depth hypothesis if at least
one of the contained high-resolution pixels has a depth hypothesis. This strategy
automatically lets the semi-dense depth maps become denser on lower resolutions
(see Fig. 5.5), leading to more robust low-resolution tracking results without affecting
the accuracy of the final result on the highest resolution. Averaging the inverse
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depth effectively averages the optical flow, causing this strategy to work well for
minimizing the photometric error (5.1). If used for reconstruction purposes however,
it will create undesired points between the front and back surface around depth
discontinuities.

5.2.2 Mapping

Depth maps are estimated by filtering over small-baseline pixel-wise stereo compar-
isons, interleaved with spatial regularization and propagation to a new frame, as
first proposed in [9]. Each mapping iteration consists of three main steps:

1. Propagation: Depth hypotheses are projected into the most recently tracked
frame, giving an initialization for the new depth map (prediction in an ex-
tended Kalman filter (EKF)).

2. Update: New depth measurements are obtained from a large number of pixel-
wise stereo comparisons with previous frames, and merged into the existing
depth map by filtering (observation in an EKF). We use the propagated prior
hypothesis to constrain the search interval, greatly accelerating the search and
reducing the probability for false observations in repetitive image regions.

Stereo is only performed for a subset of suitable pixels, that is pixels where the
expected accuracy is sufficiently high. This depends on the intensity gradient
at that point as well as the camera motion, and is efficiently determined as
proposed in [9]. In particular, regions with little image gradient are never
updated as no accurate stereo measurements can be obtained. ΩD contains all
pixels that have a depth hypothesis, either propagated from previous frames,
or observed in that frame.

3. Regularization: In a last step, the depth map is spatially regularized and
outliers are removed.

Mapping runs in a continuous loop, in each iteration propagating the depth map to
the most recently tracked frame, potentially skipping some frames. The runtime of
one iteration varies in practice, as it depends on the density of the current depth
map and the camera motion; an experimental runtime evaluation is given in Sec. 5.4.

5.2.3 Implementation on Mobile Phones

Current smartphone cameras have a rolling shutter, which introduces systematic
distortions and, during quick motion, can have strong effects on the accuracy of
stereo observations. While there exist methods to correctly model this in an off-line
reconstruction setting [101], or to approximate it in real-time [62, 76], we found that
ignoring the rolling shutter still gives very good results in practice, and significantly
saves computational time.
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Figure 5.6: Variational Inpainting. The top row shows a number of full-resolution
depth maps from live operation, the bottom row shows the computed low-resolution,
regularized version used to build the collision mesh.

All experiments are conducted on a Sony Xperia Z1, which is equipped with a
2.3 GHz quad-core CPU. While the processing power of mobile devices has increased
rapidly in the last years, mobile processors based on the ARM architecture are
generally still much slower than their desktop counterparts; we currently do not
use GPU or DSP features for tracking or mapping. In order to achieve real-time
performance, i.e. tracking with at least 30 fps under these conditions, two steps were
crucial: (1) separation of mapping and tracking resolution and choice of a suitable
compromise, and (2) NEON optimization of computation-heavy algorithmic steps.

Image Resolution. While current desktop CPUs easily allow for real-time oper-
ation at VGA resolution (640×480), our mobile implementation performs mapping
at 320×240. As tracking performance is crucial for a smooth AR experience, we
further reduce the maximum resolution used for tracking down to 160×120. While
this greatly reduces the computation time, the effect on accuracy is relatively small
(see Sec. 5.4). This can be explained by the sub-pixel accuracy of direct image align-
ment: In practice, inaccuracies from motion blur, rolling shutter and other model
violations (e.g. reflections, occlusions, specular highlights, etc.) dominate the error.

NEON Parallelization. Many parts of the tracking stage are well suited for
optimization using SIMD parallelization. We use NEON instructions, which offer
this functionality on ARM processors, leading to greatly improved performance and
thereby being a vital step in achieving real-time performance on mobile processors.
There are two algorithmic steps in tracking which particularly benefit from NEON
optimization:

(1) Calculating the approximated Hessian H and gradient g of the error required
for building the linear system to compute the pose increment ∆ξ, that is

∑

x∈ΩD

JTx Jxwx

︸ ︷︷ ︸
H

·∆ξ =
∑

x∈ΩD

JTxrxwx

︸ ︷︷ ︸
g

, (5.4)

where rx, Jx and wx are, for one pixel x, the pixel’s residual, its Jacobian with
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Input
video frame

Pose
estimation

AR frame
rendering

Mapping

World model
creation

full resolution 320x240

30 Hz

30 Hz

30 Hz
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Figure 5.7: AR Processing Pipeline. Camera images are retrieved and displayed
directly at full resolution. Simultaneously, a downsampled (320× 240) version is computed
and processed in the VO pipeline to allow real-time tracking and mapping. The estimated
pose of that frame, as well as the generated world model are then used to render virtual
objects into the scene. The world model is updated asynchronously at a lower frequency.
All components run in parallel.

respect to the pose update, and the computed Huber weight. Using NEON opti-
mization, four elements in the sum – which goes over all pixels which have depth –
can be processed at once, resulting in a significant speed-up.

(2) Calculating the weights and residual sum: again, four pixels can be processed
at the same time. In addition, NEON offers fast inverse approximations, which help
to reduce processing time.

Both the above steps are required in every Levenberg-Marquardt iteration,
thereby making up a large part of overall tracking performance. Details to the
runtime of our implementation, with and without NEON acceleration, are given in
Sec. 5.4.

5.3 Augmented Reality Application

We demonstrate a simple AR game using the computed semi-dense depth maps, in
which a simulated car can be driven through the environment. For this, we construct
a low-resolution collision mesh from the semi-dense depth map, which is used for
real-time physics simulation with the free Bullet library [28].

For this, we assume that the scene has a well-defined ground plane, which we
estimate with the help of the IMU. The full processing pipeline for augmented reality
is shown in Fig. 5.7.
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5.3.1 Collision Mesh Generation

We first compute a fully dense low-resolution (15×20) depth map using a variational
in-painting approach. As data term for valid pixels we use the hypothesis from the
corresponding level of the semi-dense depth map. Additionally, to cover up large
unconstrained regions, we assume that pixels that do not have a depth hypothesis
lie on the estimated ground plane π. As regularizer we use the Huber norm

‖x‖δ :=





‖x‖2
2

2δ
if ||x||2 < δ

‖x‖1 − δ
2

otherwise
(5.5)

of the inverse depth gradient. The Huber norm is a combination of a quadratic
regularizer favouring smooth surfaces, and the total variation (TV), which allows
sharp transitions at occluding edges. The combined energy to be minimized with
respect to the resulting inverse depth map u is hence given by

E(u) :=
∫

ΩD

(u(x)−D(x))2

V (x)
dx

+
∫

Ω\ΩD

(u(x)− π(x))2

Vπ
dx

+α
∫

Ω
‖∇u‖δdx, (5.6)

where π(x) denotes the inverse depth of pixel x assuming it lies on the estimated
ground plane, while Vπ and α are parameters of the energy functional. This is a
convex energy, and on the used resolution can be minimized globally and quickly
using gradient descent. Fig. 5.6 shows some results. Afterwards, a triangle mesh is
generated from the resulting depth map by interpreting the depth pixels as corners
of a regular triangle grid. Some examples in different scenes are shown in Fig. 5.9. A
desirable effect of this approach is that the collision meshes naturally have a higher
resolution in close-by than in far-away regions, where the un-projected mesh vertices
are more tightly spaced and at the same time the depth map is more accurate.

5.3.2 Ground Plane Estimation

We estimate the ground plane normal by low-pass filtering accelerometer measure-
ments which are available on all modern smartphones, giving the direction of gravity.
To determine the plane height, we search for the lowest height which is supported
by a certain minimum number of depth map samples. The maximum height of all
supporting samples is then taken as ground plane: this assures that small bumps,
caused by inaccurate height estimates of individual samples, are covered up with a
smooth ground surface to drive on.
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5.4. Results

fr2/xyz fr2/desk
method mapping tracking (cm/s) (deg/s) (cm/s) (deg/s)

PTAM 640×480 640×480 8.2 3.2 fail fail

ours 640×480 640×480 0.50 0.31 2.2 0.96
ours 640×480 320×240 0.58 0.32 3.6 1.25

ours 320×240 320×240 0.58 0.32 3.3 0.96
ours 320×240 160×120 0.62 0.33 4.9 1.38

ours 160×120 160×120 0.68 0.37 fail fail
ours 160×120 80×60 1.58 0.71 fail fail

Table 5.1: Accuracy Evaluation. Tracking accuracy (as drift per second) for two
sequences from the TUM RGB-D benchmark [114] at different resolutions. For comparison,
we also include results obtained from PTAM [69]. The sequences contain significant rolling
shutter and motion blur effects, which reduce the tracking accuracy of PTAM significantly.
Accuracy of direct tracking degrades only very little with decreasing image resolution.
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Figure 5.8: Initialization evaluation. Development of errors in successful random
initialization runs (average in blue, all samples in gray), evaluated on subsequences of the
TUM RGB-D benchmark fr2/desk sequence. The depth error shows the relative deviation
from the ground truth depth, after choosing the optimal scale. The tracking error shows
the translational drift per 0.5 seconds, relative to the traveled distance. The largest
reduction in depth error happens already within the first 0.5 seconds; the tracking error
requires longer to stabilize.

5.4 Results

Initialization. We evaluate the success rate of random initialization by running
our system on many subsequences of the fr2/desk sequence of the TUM RGB-D
benchmark [114]. Note that this includes subsequences with all types of motion,
in particular strong rotation or forward-translation, which are ill-conditioned for
initialization – causing the initialization to fail more often than in a hand-held case.

A run is classified as successful if the mean relative depth error after 3 seconds
is at most 16%, and final relative translational drift (computed over 15 frames) is
at most 60%. We observed that the success rate strongly depends on the movement
speed of the camera: if the camera does not move sufficiently fast, the depth filters
become over-confident, and get stuck at wrong values – this however can be avoided
by only mapping on a subset of frames, e.g. every 4th frame. Overall, the measured
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C++ ASM with NEON ASM with NEON
320×240 640×480 320×240

Tracking 30.7 (±11.2) 39.2 (±15.9) 14.7 (±6.8)
Mapping 46.6 (±35.4) 184.4 (±123.3) 52.6 (±37.7)

Table 5.2: Computation Speed Evaluation. Performance of tracking and mapping
for the first 600 frames of the fr2/desk sequence, on a Sony Xperia Z1 (mean and standard
deviation, in ms per iteration). The given resolution is the mapping resolution, tracking
is done with one pyramid level higher as the last level. Mapping is not NEON-optimized;
the frames were played back with 30 fps. Note that tracking and mapping run in parallel.

Figure 5.9: Example Images. Qualitative evaluation of the system in different, chal-
lenging scenes. The collision mesh is fixed and shown from a different perspective, together
with its original viewport, augmented objects and the ground plane. The screenshots are
taken by the smartphone during live operation.

initialization success rate with this configuration is 67%. Figure 5.8 shows the
evolution of the relative translational drift as well as the mean relative depth error
over the first 10 s of all successful runs. Note that these results are obtained using
resolutions as employed on the smartphone, and some of the sequences contain
strong motion blur and rolling shutter artifacts.

Accuracy. We numerically evaluate the tracking accuracy of the proposed ap-
proach for different resolutions using the TUM RGB-D benchmark. To be inde-
pendent from initialization issues and to obtain the correct scale, we use the very
first depth image for initialization, while for the remainder of the sequences only
the provided intensity images are used. Table 5.1 shows the results. Notably, the
accuracy only changes very little with decreasing image resolution, allowing smooth
yet accurate operation on a smartphone.

Speed. With NEON optimizations at a resolution of 320×240, our system is able
to track the camera pose with usually well more than 30 Hz on current-generation
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smartphones. See Table 5.2 for timing values measured on a Sony Xperia Z1.

Qualitative Results. We extensively tested the system in real-time operation,
Fig. 5.9 shows some examples of augmented scenes. A full sequence is shown in the
attached video.

5.5 Conclusion

The presented direct monocular visual odometry algorithm is able to operate in real-
time on a modern smartphone, with tracking rates of well above 30 Hz at a mapping
resolution of 320 × 240. It operates fully without features; instead it is based on
direct image alignment for tracking, and semi-dense depth estimation by pixel-wise
filtering over many small-baseline stereo comparisons for mapping. This allows to
use much more information in the images (including e.g. edges) and reduces the
number of outliers drastically. In addition to accurately and robustly estimating the
camera pose, the estimated semi-dense depth maps can be used to build a physical
world model for AR with little additional computational effort. We demonstrated
this with a small example application.

As future work, using a more sophisticated regularizer for depth map in-painting
(e.g. total generalized variation) will eliminate the need for estimating a ground
plane. At the same time, more sophisticated minimization schemes as e.g. in [112]
will allow world modeling on higher resolutions. Integrating the recent extension
towards full, large-scale direct monocular SLAM (LSD-SLAM) [4] will allow to merge
collision meshes and scale the method to larger environments.
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Chapter 6. Large-Scale Direct SLAM with Stereo Cameras

Abstract. We propose a novel Large-Scale Direct SLAM algorithm for
stereo cameras (Stereo LSD-SLAM) that runs in real-time at high frame
rate on standard CPUs. In contrast to sparse interest-point based meth-
ods, our approach aligns images directly based on the photoconsistency
of all high-contrast pixels, including corners, edges and high texture ar-
eas. It concurrently estimates the depth at these pixels from two types of
stereo cues: Static stereo through the fixed-baseline stereo camera setup
as well as temporal multi-view stereo exploiting the camera motion. By
incorporating both disparity sources, our algorithm can even estimate
depth of pixels that are under-constrained when only using fixed-baseline
stereo. Using a fixed baseline, on the other hand, avoids scale-drift that
typically occurs in pure monocular SLAM. We furthermore propose a
robust approach to enforce illumination invariance, capable of handling
aggressive brightness changes between frames – greatly improving the
performance in realistic settings. In experiments, we demonstrate state-
of-the-art results on stereo SLAM benchmarks such as Kitti or challeng-
ing datasets from the EuRoC Challenge 3 for micro aerial vehicles.

6.1 Introduction

Visual simultaneous localization and mapping (SLAM) under real-time constraints
has traditionally been tackled using sparse interest points, since they reduce the
large amount of pixels in images to a small amount of features. Only recently, real-
time capable direct methods have been proposed that avoid the reliance on interest
points, but instead perform image alignment and 3D reconstruction directly on
pixels using photoconsistency constraints. The premise of direct approaches over
interest-point based methods is that image information can be used densely. No
manual design of interest point detectors, descriptors, and matching procedures is
required, which would also restrict the SLAM algorithm to a specific type of feature
– typically only image corners are used. Instead in direct SLAM methods, a rich set
of pixels contributes to depth estimation and mapping.

In this paper, we propose the first large-scale direct visual SLAM approach for
stereo cameras that is real-time capable on CPUs. Our method estimates depth
with uncertainty estimates at pixels with high intensity gradient, reconstructing a
semi-dense depth map online. It concurrently tracks the rigid-body motion through
photometric alignment of images based on the depth maps.

In our previous work on large-scale direct monocular SLAM (LSD-SLAM), we ob-
tain depth in keyframes by pixel-wise stereo between the current and the keyframe.
Camera motion is tracked towards a keyframe through photometric image align-
ment. For SLAM on the global scale, keyframes are aligned towards each other
and their poses are optimized by graph optimization. Since reconstruction scale is
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6.1. Introduction

Figure 6.1: KITTI Reconstruction Example. Stereo LSD-SLAM is a fully direct
SLAM method for stereo cameras. It runs at 30Hz on a CPU, computing accurate camera
movement as well as semi-dense probabilistic depth maps. We exploit both static and
temporal stereo and correct for affine lightning changes, making the method both accurate
and robust in real-world scenarios. Some examples are shown in the attached video.

not observable in monocular SLAM, we additionally optimize for the scale in direct
image alignment as well as in pose graph optimization.

In this work, we couple temporal stereo of monocular LSD-SLAM with static
stereo from a fixed-baseline stereo camera setup. At each pixel, our Stereo LSD-
SLAM method integrates static as well as temporal stereo cues into the estimate
depending on availability. This combines the properties of monocular structure
from motion with fixed-baseline stereo depth estimation in a single SLAM method.
While static stereo effectively removes scale as a free parameter, temporal stereo
cues allow for estimating the depth from baselines beyond the small baseline of the
stereo camera. Temporal stereo is not restricted to one specific (e.g. horizontal)
direction like static stereo. Rather its baseline corresponds to the translational
motion between frames. We furthermore propose a method for handling illumination
changes in direct image alignment which significantly improves the robustness of our
algorithm in realistic settings.

We evaluate Stereo LSD-SLAM on the popular Kitti benchmark and datasets
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from the EuRoC Challenge 3 for micro aerial vehicles (MAVs), demonstrating the
state-of-the-art performance of our approach.

6.2 Related Work

Sparse interest-point-based approaches to visual odometry and SLAM have been ex-
tensively investigated in recent years. The term visual odometry has been coined in
the seminal work of Nister et al. [89] who proposed sparse methods for estimating the
motion of monocular as well as stereo cameras by sequential frame-to-frame match-
ing. Chiuso et al. [23] proposed one of the first real-time capable monocular SLAM
methods based on non-linear filtering. Davison [31] proposed MonoSLAM, a real-
time capable, EKF-based method that demonstrated SLAM in small workspaces.
Sparse interest points are tracked in an EKF-SLAM formulation in order to recover
camera motion and the (global) 3D position of the interest points. Another example
of sparse monocular SLAM is Parallel Tracking and Mapping (PTAM [69]) which
separates and parallelizes optimization for tracking and mapping in a bundle adjust-
ment framework. More recently, Strasdat et al. [109] included scale as a parameter
in a key-frame-based optimization approach to sparse monocular SLAM.

Using a fixed-baseline stereo camera setup, scale becomes directly observable.
One early work applies EKF-SLAM on a sparse set of interest points [30]. Paz
et al. [92] combine monocular stereo cues with fixed-baseline stereo in a sparse
hierarchical EKF-SLAM framework.

Direct methods that avoid the detection of sparse interest points have recently
attracted attention for visual SLAM. One major advantage of direct over sparse
methods is that they do not rely on manually designed image features which con-
strain the type of information that can be used in subsequent processing stages. In
the RGB-D domain [65, 66, 83], direct methods have become the state-of-the-art
for their high accuracy and efficiency. LSD-SLAM [4] has been the first large-scale
direct monocular SLAM method. In LSD-SLAM, camera motion is tracked to-
wards keyframes for which semi-dense depth maps are estimated using probabilistic
filtering. Pose graph optimization aligns the keyframes in a globally consistent ar-
rangement. LSD-SLAM explicity considers scale drift in pose graph optimization
and finds a single consistent scale. For stereo cameras, a direct visual odometry
approach has been proposed by Comport et al. [26]. Their approach does not ex-
plicitly recover depth, but uses quadrifocal constraints on pixels which are in stereo
correspondence for camera motion estimation. In the direct stereo method in [118],
a disparity map is integrated over time, while the motion of the stereo camera is
tracked through direct image alignment using the estimated depth. The keyframes
in our approach also integrate depth, while we employ probabilistic filtering instead.
Our approach combines fixed-baseline stereo cues from the static camera setup with
temporal stereo from varying baselines caused by the moving camera. We combine
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Figure 6.2: Overview. Schematic layout of the Stereo LSD-SLAM system.

this with a pose-graph-based SLAM system that globally optimizes the poses of the
keyframes. A further important contribution of our work is the correction for affine
lighting changes to enable direct image alignment in realistic settings. Differently
to previous methods [49, 71], we optimize for affine lighting correction parameters
in an alternating fashion, which allows for different outlier rejections schemes to be
applied in image alignment and lighting correction.

6.3 LSD-SLAM with Stereo Cameras

LSD-SLAM [4] is a key-frame based localization and mapping approach which uses
the following main steps:

• The motion of the camera is tracked towards a reference keyframe in the
map. New keyframes are generated if the camera moved too far from existing
keyframes in the map.

• Depth in the current reference keyframe is estimated from stereo correspon-
dences based on the tracked motion (temporal stereo).

• The poses of the keyframes are made globally consistent by mutual direct
image alignment and pose graph optimization.

In Stereo LSD-SLAM, the depth in keyframes is in addition directly estimated
from static stereo (see Fig. 6.2). There is a number of advantages of this approach
to relying solely on temporal or solely on static stereo. Static stereo allows for
estimating the absolute scale of the world and is independent of the camera move-
ment. However, static stereo is constrained to a constant baseline (with, in many
cases, a fixed direction), which effectively limits the performance to a specific range.
Temporal stereo does not limit the performance to a specific range as demonstrated
in [4]. The same sensor can be used in very small and very large environments, and
seamlessly transits between the two. On the other hand, it does not provide scale
and requires non-degenerate camera movement. An additional benefit of combining
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Figure 6.3: Geometry Representation. Each keyframe maintains a Gaussian prob-
ability distribution on the inverse depth for all pixels that have sufficient image gradient
such that the depth can be estimated. From left to right: Intensity image, semi-dense
inverse depth map, inverse depth variance map.

temporal and static stereo is, that multiple baseline directions are available: while
static stereo typically has a horizontal baseline – which does not allow for estimating
depth along horizontal edges, temporal stereo allows for completing the depth map
by providing other motion directions.

In detail, we make the following key contributions:

• We generalize LSD-SLAM to stereo cameras, combining temporal and static
stereo in a direct, real-time capable SLAM method.

• We explicitly model illumination changes during direct image alignment,
thereby making the method highly robust even in challenging real-world con-
ditions.

• We perform a systematic evaluation on two benchmark datasets from realistic
robotics applications, demonstrating the state-of-the-art performance of our
approach.

6.3.1 Notation

We use bold capital letters for matrices (such as R) and bold lower case letter for
vectors (such as ξ). The operator [·]n selects the n-th row of a matrix. Throughout
the paper we use d to denote the inverse of the depth z of a point, i.e., d = z−1.

In Stereo LSD-SLAM, a map is maintained as a set of keyframes
Ki =

{
I li , I

r
i , Di, Vi

}
. Each keyframe consists of the left and right image I

l/r
i : Ω→ R

of the stereo camera, an inverse depth map Di : ΩDi
→ R+ and its variance map

Vi : ΩDi
→ R+. Depth and variance are only maintained for one of the images in the

stereo pair, we always use the left image as reference frame. We assume the image
domain Ω ⊂ R2 to be given in stereo-rectified image coordinates, i.e., the intrinsic
and extrinsic camera parameters are known a-priori. The domain ΩDi

⊂ Ω is the
semi-dense restriction to the pixels which are selected for depth estimation.

We denote pixel coordinates by u = (ux uy 1)T . A 3D position

p = (px py pz 1)T is projected into the image plane through the mapping
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u = π(p) := K ((px/pz) (py/pz) 1)T , where K is the camera matrix. The mapping

p = π−1(u, d) :=
(
(d−1K−1u)

T
1
)T

inverts the projection with the inverse depth d.

6.3.2 Depth Estimation

We estimate the geometry of the scene in keyframes. Each keyframe maintains
Gaussian probability distributions on the inverse depth of a subset of pixels. This
subset is chosen as the pixels with high image gradient magnitude, since these pixels
provide rich structural information and more robust disparity estimates than pixels
in textureless areas. Figure 6.3 shows an example of such a semi-dense depth map
and associated variance map. We initialize the depth map by propagating depth
hypothesis from the previous keyframe. The depth map is subsequently updated
with new observations in a pixel-wise depth-filtering framework. We also regularize
the depth maps spatially and remove outliers.

In contrast to monocular SLAM, depth is estimated both from static stereo (i.e.,
using images from different physical cameras, but taken at the same point in time)
as well as from temporal stereo (i.e., using images from the same physical camera,
taken at different points in time).

Static Stereo We determine the static stereo disparity at a pixel by a corre-
spondence search along its epipolar line in the other stereo image. In our case of
stereo-rectified images, this search can be performed very efficiently along horizontal
lines.

As correspondence measure we use the SSD photometric error over five pixels
along the scanline. After subpixel accurate refinement of the disparity, its variance is
estimated through the geometric and photometric error identified in [9]. If a Gaussian
prior with mean d and standard deviation σd on the inverse depth is available, we
constrain the search to [d− 2σd, d+ 2σd]. In practice, the search interval consists
of only very few pixels for all but newly initialized hypothesis, greatly accelerating
the search and reducing the probability of finding an incorrect or ambiguous match.
According to the two error sources, we expect that pixels with image gradients close
to vertical, or with low image gradient along the horizontal direction do not provide
accurate disparity estimates. Hence, we neglect these pixels for static stereo.

When a new keyframe is initialized, we immediately perform static stereo to
update and prune the propagated depth map. In particular, pruning removes pixels
that became occluded, and we fill in holes arising from forward-warping the depth
map. Subsequently, we also make use of static stereo from tracked non-keyframes,
and integrate the obtained disparity information into the keyframe they were tracked
on: In a first step, the inverse depth hypothesis at a pixel u in the keyframe is
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transformed into the new frame,

u′ = π
(
Tξπ

−1 (u, d)
)

(6.1)

d′ =
[
Tξπ

−1 (u, d)
]−1

3
(6.2)

σ2
d′ =

(
d

d′

)4

σ2
d, (6.3)

according to the pose estimate ξ. The propagated hypothesis is used as prior for
a stereo search, and the respective observed depth d′

obs and observation variance
σ2
d′,obs is determined. Finally, the observation is transformed back into the keyframe

using

dobs =
[
T−1

ξ (π−1 (u′, d′
obs))

]−1

3
(6.4)

σ2
obs =

(
d′

obs

dobs

)4

σ2
d′,obs, (6.5)

and fused into the depth map. Note that observations from non-keyframes can only
be generated for pixels with an existing prior hypothesis – new hypothesis are only
generated during stereo on the keyframe, or from temporal stereo. This process is
schematically shown in Fig. 6.2.

Temporal Stereo After tracking, we estimate disparity between the current frame
and the reference keyframe and fuse it in the keyframe. Again, we only use pixels
for which the expected inverse depth error is sufficiently small. We determine this
uncertainty from several criteria: the image gradient should be sufficiently large,
not be parallel to the epipolar line and the pixel should not be close to the epipole.
We kindly refer to [9] for further details on this method. While we use a simple 5-
pixel SSD error, we correct for affine lighting changes with the affine mapping found
during tracking, as will be described in Sec. 6.3.3. Note that for temporal stereo,
the geometric error typically is higher than for static stereo, as relative camera pose
stems from direct image alignment. This pose estimate often is less accurate than
the offline calibrated extrinsic calibration between the stereo camera pair.

6.3.3 Direct Image Alignment with Affine Lighting Correc-
tion

We determine the camera motion between two images using direct image alignment.
We use this method to track camera motion towards a reference keyframe. It is
also used for estimating relative pose constraints between keyframes for pose graph
optimization. Finally, we propose a robust method to compensate for affine lighting
changes.
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Figure 6.4: Temporal vs. Static Stereo. Example of a scene where both temporal
stereo (epipolar lines are parallel to the lane-markings on the road) and static stereo
(epipolar lines are parallel to the horizontal bridge) alone fail to capture all information
present. Our combined approach fuses information from both, and hence can reconstruct
everything in the scene.

Direct Image Alignment

The relative pose between two images I l1 and I l2 is estimated by minimizing the
photometric residuals

rIu(ξ) := I l1 (u)− I l2 (π (p′)) (6.6)

where p′ := Tξπ
−1 (u, D1(u)) and ξ transforms from image frame I l2 to I l1. We also

determine the uncertainty σIr,u of this residual [4]. The optimization objective for
tracking a current frame towards a keyframe is

Etrack(ξ) :=
∑

u∈ΩD1

ρ

(
rIu(ξ)

σIr,u

)
, (6.7)

where ρ is a robust weighting function; we choose ρ as the Huber norm. Note that in
contrast to [26], we only align I l1 to I l2. While one could choose to add photometric
constraints to the new right image Ir2 , we observed that this can decrease accuracy
in practice: typically, the baseline from I l1 to Ir2 is much larger than to I l2, leading
to more outliers from occlusions and reflections.

Since fused depth is available in keyframes, we add geometric residuals for
keyframe-to-keyframe alignment,

rDu (ξ) := [p′]3 −D2 (π (p′)) (6.8)
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providing additional information that is not available when initially tracking new
frames, since these not have associated depth estimates yet. The combined objective
is

Ekeyframes(ξ) :=
∑

u∈ΩD1

[
ρ

(
rIu(ξ)

σIr,u

)
+ ρ

(
rDu (ξ)

σDr,u

)]
(6.9)

Note that this formulation exploits the full depth information available for both
frames, including propagated and fused observations from other stereo pairs (see
Sec. 6.3.2). This is in contrast to an implicit quadrifocal approach as e.g. in [26].

We minimize these objectives using the iteratively re-weighted Levenberg-
Marquardt algorithm in a left-compositional formulation: Starting with an initial
estimate ξ(0), in each iteration a left-multiplied increment δξ(n) is computed by
solving for the minimum of a second-order approximation of E, with fixed weights:

δξ(n) = −(JTWJ + λdiag(JTWJ))−1JTWr (6.10)

where

J =
∂r(ǫ ◦ ξ(n))

∂ǫ

∣∣∣∣∣
ǫ=0

(6.11)

is the derivative of the stacked vector of residuals r(ξ) with respect to a left-
multiplied increment ǫ, JTWJ the Gauss-Newton approximation of the Hessian
of E, and W a diagonal matrix containing the weights. The new estimate is then
obtained by multiplication with the computed update

ξ(n+1) = δξ(n) ◦ ξ(n). (6.12)

We use a coarse-to-fine scheme to improve efficiency and basin of convergence of the
optimization.

Assuming the residuals to be statistically independent, the inverse of the Hessian
from the last iteration (JTWJ)−1 is an estimate for the covariance Σξ of a left-
multiplied increment ǫ onto the final minimum, that is

ξ(n) = ǫ ◦ ξtrue with ǫ ∼ N (0,Σξ). (6.13)

In practice, the residuals are highly correlated, such that Σξ is only a lower bound
- yet it contains valuable information about the correlation between noise on the
different degrees of freedom.

Affine Lighting Correction

Direct image alignment is fundamentally based on the brightness constancy assump-
tion, which is heavily violated e.g. when the cameras exposure time is adjusted to
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better fit the average brightness of the scene. A well-known countermeasure is to
use a cost function that is invariant to affine lighting changes, e.g. using the normal-
ized cross correlation (NCC) instead of a simple sum of squared differences (SSD)
for matching. Here, we propose a similar approach, and modify the photometric
residuals (6.6) to be invariant to affine lighting changes:

rIu(ξ) := aI l1(u) + b− I l2(p′). (6.14)

Instead of a joint optimization for a, b and ξ in a common error formulation, we
alternate between (1) a single Levenberg-Marquardt update step in ξ (fixing a, b)
and (2) a full minimization over a, b (fixing ξ), using different weighting schemes.
This is motivated by the observation that ξ and a, b react very differently to outliers:

• The minimum in a, b is heavily affected by occluded and over-exposed pixels,
as these tend to ”pull” in the same wrong direction. On the other hand, it
typically is well-constrained already by only a small number of inlier-residuals
– we therefore employ a simple, aggressive cut-off SSD error, i.e., ρa,b(r) :=
min{δmax, r

2}. Fig. 6.5 shows two example scenes, and the resulting affine
mapping with and without outlier rejection.

• The minimum in ξ is much less affected by outliers, as they tend to ”pull”
in different directions, cancelling each other out. In turn, it may happen
that some dimensions of ξ are only constrained by a small amount of pixels,
which initially have a high residual – removing these as outliers will cause
the estimate to converge to a wrong local minimum. We therefore employ
the weighting scheme proposed in [4], which only down-weights but does not
remove residuals.

Minimization in a, b is done by iteratively minimizing

Ea,b(a, b) :=
∑

u∈ΩD1

ρa,b
((
aI l1(u) + b

)
− I l2(u′)

)
(6.15)

with u′ := π (p′), which can be done in closed-form:

a∗ =

∑
u∈ΩL

I l1(u)I l2(u
′)

∑
u∈ΩL

I l2(u
′)I l2(u

′)
(6.16)

b∗ =
1

|ΩL|
∑

i

(
I l1(u

′)− a∗I l2(u)
)
, (6.17)

with the set of inliers

ΩL :=
{
u ∈ ΩD1 | ρa,b

((
aI l1(u) + b

)
− I l2(u′)

)
< δmax

}
.

The found affine parameters a, b are then used during temporal stereo and during
the consistency check on depth propagation.
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I1(u)

I2(u
′)

I1(u)

I2(u
′)

Figure 6.5: Affine Lighting Correction. Two scenes with strong lighting changes.
On the right, we show a the scatter-plot of all residuals after direct image alignment; The
green line shows the best fit from our approach, while the red line shows the best fit for
all pixel. Note how it is heavily affected by outliers caused by occlusions and over-exposed
pixels, which are easily recognizable in the scatter-plot.
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Level Num Time

46× 30 10.5k 0.6 ms
92× 60 6.1k 2 ms
184× 120 4.6k 8 ms
368× 240 4.1k 24 ms

Figure 6.6: Pyramid Tracking Speed. Resulting pose-graph for Sequence 00 from the
Kitti benchmark, containing 1227 keyframes and 3719 constraints. The table shows how
many constraints have been attempted to track down to which pyramid level, as well as
the average time required for reciprocal image alignment on that pyramid level. Note how
most incorrect loop-closures candidates are discarded at very coarse resolution already,
which is very fast. Over the whole sequence, only 43 large loop-closure attempts were
required, to find all loop-closures in the sequence.

6.3.4 Key-Frame-Based SLAM

Once a keyframe Ki is finalized – that is, after it is replaced as tracking reference and
will not receive any further depth updates – it is added to the pose-graph, which is
continuously optimized in the background. Constraints are obtained by performing
SE(3) alignment with depth residual and affine lighting correction to a set of possible
loop-closure candidates: Tracking is attempted on all keyframes Kj1 , ...,Kjn , which

• are at a physical distance of less than (60 + p · 0.05) m.

• have a difference in viewing direction of less than (35 + p · 0.01)◦.

where p is the length of the shortest connecting path in the keyframe graph between
the two keyframes in meters, which serves as a conservative approximation to the
accumulated relative pose error. For very large maps, additional loop-closures can
be found by exploiting appearance-based image-retrieval techniques like FAB-MAP
[29]. However in our experiments we did not find this to be necessary. For keyframes
with p ≤ 100 m, we use the relative pose obtained by composing edges along this
path as initialization for direct image alignment, otherwise the identity is used.

For each candidate Kjk we independently compute ξjki and ξijk by minimizing
(6.9). Only if the two estimates are statistically similar, i.e., if

e(ξjki, ξijk) := (ξjki ◦ ξijk)TΣ−1(ξjki ◦ ξijk) (6.18)

with Σ := Σjki + AdjjkiΣijkAdjTjki (6.19)
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SLAM VO
Seq. trel rrel tabs time trel rrel time

00 0.63 0.26 1.0 82 1.09 0.42 21
01 2.36 0.36 9.0 37 2.13 0.37 24
02 0.79 0.23 2.6 64 1.09 0.37 28
03 1.01 0.28 1.2 72 1.16 0.32 27
04 0.38 0.31 0.2 51 0.42 0.34 28
05 0.64 0.18 1.5 77 0.90 0.34 29
06 0.71 0.18 1.3 72 1.28 0.43 29
07 0.56 0.29 0.5 74 1.25 0.79 31
08 1.11 0.31 3.9 73 1.24 0.38 29
09 1.14 0.25 5.6 61 1.22 0.28 30
10 0.72 0.33 1.5 70 0.75 0.34 21

mean 00-10 0.91 0.27 2.6 67 1.14 0.40 29
mean 11-21 1.21 0.35 – 69 1.40 0.36 28

· trel: translational RMSE drift (%), av. over 100 m to 800 m intervals.
· rrel: rotational RMSE drift (deg per 100 m), av. over 100 m to 800 m intervals.
· tabs: absolute RMSE after 6DoF alignment, in meters.

· time: single-threaded computation time per frame, in milliseconds.

Table 6.1: Results on Kitti Benchark.

is sufficiently small, they are added as constraints to the pose-graph. Here, Adjjki
is the adjoint of ξjki in SE(3). To speed up the removal of incorrect loop-closure
candidates, we apply this consistency check after each pyramid level. Only if it
passes, direct image alignment is continued on the next higher resolution. This al-
lows to discard most incorrect candidates with only very little wasted computational
resources: Figure 6.6 shows how many constraints where tracked on which pyramid
level for one of the longest sequences in the Kitti dataset.

6.4 Results

We present the results obtained by Stereo LSD-SLAM (1) on the well-known Kitti
dataset, and (2) on three sequences recorded from a micro aerial vehicle (MAV)
flying indoors, taken from the EuRoC Challenge 3. We evaluate both the runtime
and accuracy, for different parameter settings. Although our implementation makes
heavy use of multiple CPU cores, all timings given in this chapter refer to single-
threaded execution on an Intel i7-4900MQ CPU running at 2.8 Ghz.
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Figure 6.7: Results on EuRoC Datasets. Top: reconstruction from the first (left) and
third (right) trajectory. Bottom: Selection of images from the third trajectory, displaying
strong lightning changes (first to second image), motion blur (third image) and views with
little texture (fourth image).

6.4.1 EuRoC Dataset

We run Stereo LSD-SLAM on the EuRoC dataset, taken from a MAV flying around
a room which is equipped with a motion capture system for ground truth acquisition.
The dataset contains 3 trajectories, with increasingly aggressive motion. Fig. 6.7
shows the reconstruction obtained. The absolute translational RMSE is 6.6 cm,
7.4 cm and 8.9 cm for the first, second and third trajectory respectively. In this
dataset we removed the first and last 150 images for each trajectory, as in some of
them only the ground surface is visible.

6.4.2 Kitti Dataset

We evaluated our method on the well-known Kitti dataset. Table 6.1 summarizes the
results both for Stereo LSD-SLAM with, and without loop-closures (VO). The results
given are for half resolution, as we feel this is a better trade-off between accuracy
and computational speed – see also Sec. 6.4.4. On the evaluation sequences 11-21,
we achieve a mean translational RMSE of 1.21% for full SLAM, which currently
ranks second amongst stereo methods. Stereo LSD-SLAM is however much faster

105



Chapter 6. Large-Scale Direct SLAM with Stereo Cameras

200m 500m 800m
0

0.5

1

1.5

segment length

tr
a
n
s
la

ti
o
n
a
l 
R

M
S

E
 d

ri
ft
 (

%
)

 

 

l = 0

l = 1

l = 2

l = 3

l = 4

l = 5

l = 10

l = ∞

−300m −100m  100m  300m

 100m

 300m

 500m

 

 

GT

SLAM

VO

Figure 6.8: Visual Odometry vs. SLAM. Left: translational drift over different
evaluation segment lengths, for different sizes of the pose-graph optimization window l.
For l =∞, our method performs full SLAM; hence the translational drift decreases when
evaluating over longer segments (down to 0.5%). Right: 6DoF-aligned trajectories of the
Kitti 00 sequence. While performing local pose-graph optimization slightly increases the
local accuracy, it cannot remove drift over long segments.

than methods achieving similar accuracy. The increased error compared to the test
sequences 00-10 is due to the presence of many moving objects in 20 and 21, which
cause direct image alignment to occasionally fail (Sec. 6.4.6). Furthermore, the Kitti
benchmark only provides images captured at 10 Hz while driving at speeds of up to
80 km/h – which is challenging for direct methods, as these are good at exploiting
small intra-frame motions.

6.4.3 Visual Odometry vs. SLAM

Here, we evaluate the capability to perform large-scale loop-closures when running
the full SLAM system, as well as the effect of only performing loop-closures in a
small window of the last l frames – effectively turning Stereo LSD-SLAM into a
Visual Odometry. For l = 0, no image alignment with geometric error is performed,
and only the pose from the initial frame alignment is used. For this comparison,
we only consider Kitti sequences which contain significant loop-closures, i.e. 00,
02, 05, 06 and 07. Figure 6.8 summarizes the result: It can clearly be seen that
performing full SLAM greatly decreases long-term drift, which is little surprising.
However, this comes at increased computational cost: when performing full SLAM,
the overall computational budget required more than doubles (also see Tab. 6.1), as
the full pose-graph has to be optimized and many loop-closure constraints have to
be tracked. All numbers in this Section refer to running Stereo LSD-SLAM at half
resolution.
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Figure 6.9: Image Resolutions. The plot shows the mean translational RMSE trel for
different image resolutions, as well as the required computation time. Stereo LSD-SLAM
allows to smoothly trade-off one for the other – for an image resolution of one eight of
the original, it runs at 400 Hz (VO) / 145Hz (SLAM) in a single thread, still achieving a
mean drift of only 3.5% (VO) and 2.5% (SLAM).

6.4.4 Effect of Image Resolution

A beautiful property of Stereo LSD-SLAM is that the achieved accuracy degrades
very gracefully with decreasing image resolution, while the computational budget
required shrinks rapidly. In fact, we were able to run both full SLAM as well as VO
on the Kitti dataset at down to one eight of the original resolution, i.e., 154×46 pix-
els, and still achieve a reasonable mean translational drift of 2.5% (SLAM) and 3.5%
(VO) – at greatly reduced computational cost, running in 15× real-time (SLAM)
and 40× real-time (VO). The result is summarized in Fig. 6.9.

6.4.5 Performance Analysis

In Table 6.2, we summarize the computational time required for each part of the
algorithm. All timings are given in milliseconds per frame. For lower resolutions,
images are down-sampled in a pre-processing step, as this typically can be done at
no additional cost in hardware (pixel binning). It can clearly be observed that all
parts of the algorithm – except for pose-graph optimization – directly scale with the
number of pixels in the image. Only at very low resolution, resolution-independent
operations – like inverting the Hessian during LM minimization – start to have a
visual impact.

6.4.6 Moving Objects & Occlusions

A remarkable property of direct image alignment approaches is the ”locking prop-
erty” [57]: In the presence of multiple motions or outliers, the coarse-to-fine approach
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154×46 310×92 620×184 1240×368

Tracking 1.2 ms 4.2 ms 16.0 ms 61.0 ms
Mapping 0.8 ms 2.9 ms 13.1 ms 62.8 ms
Constr. Search 3.7 ms 10.5 ms 40.0 ms 143.1 ms
Pose-Graph Opt. 1.2 ms 1.3 ms 1.4 ms 1.3 ms

Total (SLAM) 6.9 ms 18.9 ms 70.5 ms 268.2 ms

Table 6.2: Computational Time Required.

causes direct methods to lock onto the most dominant motion within the validity
radius of the linearisation. A robust weighting function then allows to minimize
the effect of pixels not belonging to this motion. Figure 6.10 shows three examples
in which large parts of the image are moving or become occluded: In the first two
examples the dominant motion is correctly identified, whereas in the third example
image alignment locks onto the moving cars in the foreground. We observed this
problem only in Sequence 20 of the Kitti benchmark as there are many cars moving
at the same speed – arguably making the dominant motion in the scene that of the
cars. For the on-line evaluation, we resolve this by removing all points in a certain
volume in front of the car for this sequence only. Nevertheless, future work could
take advantage of our approach, for example by segmenting the scene motion into
a number of rigid-body motions ([57, 111, 124]).

6.4.7 Qualitative Results

We show in Fig. 6.11 some qualitative results of the estimated semi-dense depth
maps, and the resulting point-clouds. Note how depth is estimated in almost all
areas that have gradient information, and how many fine details (signs, lamp posts)
are recovered. Also, the inclusion of temporal stereo allows to estimate depth for
strictly horizontal structures, like the power transmission lines visible in some of the
images.

6.5 Conclusion

We proposed Stereo LSD-SLAM, a novel direct approach to SLAM with stereo
cameras. Our method leverages static, fixed-baseline stereo as well as temporal,
variable-baseline stereo cues. Static stereo provides accurate depth within the ef-
fective operating range of the stereo camera. It also removes scale ambiguities and
difficulties with degenerate motion along the line of sight, a problem inherent to
monocular SLAM that only uses temporal stereo. With temporal stereo on the
other hand, depth can be estimated in variable baseline directions that correspond
to the translational motion between frames.
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Figure 6.10: Failure Cases. Examples for scenes with moving objects & strong occlu-
sions. On the right, we show the intensity residual after direct image alignment (small
values are shown in gray; large negative / positive residuals are shown in black / white).
While in the first two examples direct image alignment locks onto the correct motion, in
the last one, it latches onto the wrong motion in the scene – the moving cars – and fails to
align the two images correctly. This can be seen by the residual around the lane marking.

Figure 6.11: Qualitative Examples. Point clouds and depth maps for the Kitti dataset
(sequences 08,14,15,18), running at full resolution. Also see the attached video.
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Our method directly aligns images using photometric and geometric residuals at
a semi-dense set of pixels. We choose pixels where there is sufficient information
for static or temporal stereo estimation. In contrast to sparse interest-point-based
methods, our approach is not restricted to a specific type of image features that are
extracted in a decoupled processing stage prior to image alignment.

In our experiments, Stereo LSD-SLAM demonstrates state-of-the-art results on
the popular Kitti benchmark dataset for stereo odometry and SLAM on autonomous
cars. Stereo LSD-SLAM also performs very accurate on challenging sequences
recorded with a micro aerial vehicle (MAV) for the EuRoC Challenge 3. Both
datasets are very challenging for a purely monocular SLAM approach, since motion
is mainly along the line of sight (cars), or can mainly consist of rotations (MAVs).

In future work, we consider extending our approach to multi-camera setups
beyond binocular stereo cameras. Sensor fusion with inertial or GPS information
could further enhance accuracy and robustness on the local and the global scale.
Finally, we plan to address multi-body motion segmentation and estimation. This
way, our method would not only recover the dominant motion in the images, but
also the motion of further independent moving objects.

110



Chapter 7
Large-Scale Direct SLAM for
Omnidirectional Cameras

Authors David Caruso2 david.caruso@polytechnique.edu

Jakob Engel1 engelj@in.tum.de

Daniel Cremers1 cremers@tum.de
1 Technical University Munich
2 Ecole Polytechnique Paris

Publication Large-Scale Direct SLAM for Omnidirectional Cameras.
D. Caruso, J. Engel, D. Cremers In Preceedings of IEEE In-
ternational Conference on Intelligent Robots and Systems (IROS),
2015. Copyright 2015 IEEE. Reprinted with permission from
IEEE. doi: 10.1109/IROS.2015.7353366

Contribution Problem definition significantly contributed
Literature survey significantly contributed
Method development & evaluation contributed
Implementation helped
Experimental evaluation contributed
Preparation of the manuscript contributed

david.caruso@polytechnique.edu
engelj@in.tum.de
cremers@tum.de
http://dx.doi.org/10.1109/IROS.2015.7353366


Chapter 7. Large-Scale Direct SLAM for Omnidirectional Cameras

Abstract. We propose a real-time, direct monocular SLAM method
for omnidirectional or wide field-of-view fisheye cameras. Both track-
ing (direct image alignment) and mapping (pixel-wise distance filtering)
are directly formulated for the unified omnidirectional model, which can
model central imaging devices with a field of view well above 150 ◦. This
is in stark contrast to existing direct mono-SLAM approaches like DTAM
or LSD-SLAM, which operate on rectified images, limiting the field of
view to well below 180 ◦. Not only does this allows to observe – and re-
construct – a larger portion of the surrounding environment, but it also
makes the system more robust to degenerate (rotation-only) movement.
The two main contribution are (1) the formulation of direct image align-
ment for the unified omnidirectional model, and (2) a fast yet accurate
approach to incremental stereo directly on distorted images. We evalu-
ated our framework on real-world sequences taken with a 185 ◦ fisheye
lens, and compare it to a rectified and a piecewise rectified approach.

7.1 Introduction

Visual Odometry (VO) and Simultaneous Localization and Mapping (SLAM) are
becoming increasingly important for robotics and mobile vision applications, as they
only require optical cameras – which are cheap, light and versatile, and hence can
easily be put into commodity hardware. A lot of research has been focused around
these topics throughout the last decade, with a particular focus on real-time systems
– which can be used for autonomous control for example of UAVs [7], [14].

Most existing approaches are based on keypoints: Once keypoints are extracted,
the images are abstracted to a collection of point-observations which are then used
to compute geometrical information. This can be done in a filtering framework
[31][78][23], or in a keyframe-based non-linear optimization framework [69], [74],
[108]. This arguably has the advantage that a large part of the required workload only
is done once on keypoint extraction, such that remaining computational resources
can be spent on enforcing large-scale geometric consistency (Bundle Adjustment),
and outliers can be removed in a straight-forward way.

More recently, so-called direct approaches have gained in popularity: instead
of abstracting the images to point-observations, they compute dense [88], or semi-
dense [4] depth maps in an incremental fashion, and track the camera using direct
image alignment. This has the advantage that much more information can be used,
in particular information contained edges or densely textured surfaces. Further,
the generated map contains substantially more information about the environment,
which can be used for obstacle-avoidance and path-planning.

What all these visual methods have in common, is that they rely on a sufficiently
informative observed environment. In many practical cases however, this can be a
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Figure 7.1: Reconstruction from Omnidirectional Camera. Top: 3D reconstruc-
tion obtained in real-time with our approach, using a 185 ◦ fisheye lens. Bottom: Map of
the trajectory and set of example keyframes, with associated color-coded inverse distance
maps.

very restrictive assumption: For example indoors where there are many untextured
white walls, or in the presence of moving objects, large parts of the camera image
can become uninformative for SLAM. This is especially true if the used camera only
has a small field of view (FoV). On the other hand, the wider the field of view, the
more likely that some part of the visible scene is well-suited for SLAM.

Nevertheless, most visual SLAM or VO systems are restrained to using a classical
pinhole camera model. Often, this is combined with a radial distortion model (such
as the ATAN model used in PTAM). All these models can not directly be used for
omnidirectional camera (with FoV of more than 180 ◦). This is especially true for
direct methods, which typically operate on rectified images – limiting the field of
view to no more than 130 ◦.

In this paper, we propose an extension of LSD-SLAM [4] to a generic omnidi-
rectional camera model. The resulting method is capable of handling all types of
central projection systems such as fisheye and catadioptric cameras. We evaluate
it on images captured with a fisheye lens covering a FoV of 185 ◦. We show that
especially for trajectories which contain aggressive camera rotations, it outperforms
in the previously presented algorithms, without losing its real-time capability.

113



Chapter 7. Large-Scale Direct SLAM for Omnidirectional Cameras

7.1.1 Related Work

There is a range of related work regarding omnidirectional vision, in particular for
robot and ground-vehicle localization. For instance [103] uses a catadioptric system
to estimates the ego-motion of a vehicle, using direct photometric error minimization
for rotation estimation – it is however restricted to planar motion. In [116], RANSAC
point association for SIFT features is used for estimating translation and rotation,
on a rig of 5 rectified cameras. Again, the system is restricted to planar motion. In
[105] a multicamera rig is used to build a topological map based on appearance. In
[50] an EKF-based SLAM system is adapted for omnidirectional cameras; In [96],
the advantage of using omnidirectional cameras in this context is shown. The work
of Meilland et. al. [84] is somewhat closer to ours, as it performs dense registration
against multiple frames from a database of spherical images. They are augmented
with distance information from an external sensor or stereo-vision. However, the
system is based on a priori learned database of georeferenced images and does not
perform online SLAM.

7.1.2 Contribution and Outline

In this paper we explore the use of omnidirectional and fisheye cameras for direct,
large-scale visual SLAM. We propose two different camera model choices, which we
integrate into the recently appeared LSD-SLAM [4] framework, and evaluate the
resulting algorithm on real-world and simulated data. More precisely, the main con-
tribution of this paper is two-fold: (1) We give a direct image alignment formulation
operating on an omnidirectional camera model. (2) We derive an efficient and ac-
curate approach to perform stereo directly on omnidirectional images, both for the
piecewise rectification approach and natively on the Unified Omnidirectional Model.
We intend to make the used datasets including ground-truth publicly available.

The paper is organized as follows: In Chapter 7.2, we introduce a camera model
as general projection function, and describe the three parametrized models consid-
ered in this paper: The Pinhole Model in Sec. 7.2.1, an Array of Pinhole Models
in Sec. 7.2.2, and the Unified Omnidirectional Model in Sec. 7.2.3. In Chapter 7.3,
we describe our omnidirectional direct SLAM method. We start by reviewing the
LSD-SLAM pipe-line as introduced in [4]. We then detail how the two major steps
that depend on the camera model – probabilistic, semi-dense depth estimation and
direct image alignment – are adapted to operate in real-time on images from omni-
directional cameras. In Chapter 7.4, we evaluate the accuracy, robustness and run-
time for the three different models on a both simulated and real-world data. Finally,
in Chapter 7.5, we summarize the results and line out future work.
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Figure 7.2: Camera Models. The same image, warped to fit the three projection
models considered in this paper. While the Unified model and the piecewise rectified
model can cover the full 185 ◦ field-of-view, the pinhole model shows significant distortion
– when cropping the image to a field-of view of only 120 ◦ horizontally, as done for this
figure.

7.2 Camera Models

In this chapter, we will lay out the three different parametric projection functions
π considered in the paper: In Sec. 7.2.1, we briefly review the well-known Pinhole
Model and discuss its limitations. We then extend it to a more general Array of
Pinhole Models allowing to cover the full viewing sphere in Sec. 7.2.2. In Sec. 7.2.3,
we introduce the Unified Omnidirectional Model, which allows to model 360 ◦-vision
in closed-form.

Notation. We use bold, capital letters R to denote matrices, and bold, lower-case
letters x for vectors. u = [u, v]T ∈ Ω ⊂ R2 will generally denote pixel coordinates,
where Ω denotes the image domain. x = [x, y, z]T ∈ R3 will be used for 3D point
coordinates and x̃ := [xT , 1]T for the corresponding homogeneous point. [·]i denotes
the i’th row of a matrix / vector.

In the most general case, a camera model is a function π : R3 → Ω, which defines
the mapping between 3D points x in the camera frame, and pixels u in the image.
For lenses with negligible diameter, a common assumption is the single viewpoint
assumption, i.e., that all light-rays pass through a single point in space – the origin
of the camera frame C. Hence, the projected position of the point only depends on
the direction of x. We will use π−1 : Ω× R+ → R3 for the function mapping pixels
back to 3D, using their inverse distance d. Further, we define a directed orthonormal
camera frame centred at C by fixing a privileged direction z (the principal axis) and
two other orthogonal directions.

Note that the single viewpoint assumption allows transforming images from any
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camera model to any other, for the domain of visible points they have in common –
this is generally referred to as image rectification, and is a frequently done prepro-
cessing step, transforming the image to follow a more simple model e.g. by removing
radial distortion. Given two projection functions π1, π2 and an image I1 : Ω1 → R

taken with a camera π1, we can compute the respective image I2 : Ω2 → R following
projection π2 as

I2(u, v) = I1(π1(π
−1
2 (u, v))) (7.1)

This warping however introduces interpolation artifacts and can degrade the image
quality, especially in areas where the angular resolution changes significantly.

7.2.1 Pinhole Model

The pinhole camera model is the most used camera model. The image is obtained by
projecting each point onto a plane located at z = 1, followed by an affine mapping

πp(x) :=

[
fx 0
0 fy

] [
x/z
y/z

]
+

[
cx
cy

]
, (7.2)

where fx, fy are the focal lengths, and cx, cy is the principal point. It is schematically
shown in Fig. 7.3.

This model is often used as the linearity of the projection function (in homoge-
neous coordinates) – and the fact that straight lines in 3D are projected to straight
lines in the image – make it the most simple model choice to use. It however has the
major drawback that it cannot model a wide field of view: The angular resolution
decreases drastically towards the borders of the image, leading to a distorted image
– an example is shown on the right in Fig. 7.7.

In order to make this model compatible to small radial distortions, a non-linear
radial distortion function – often approximated polynomially – can be applied to the
projected pixel coordinates. Still, the nature of a pinhole projection forbids points
to lie behind the image plane, limiting the field of view to below 180 ◦.

7.2.2 Array of Pinhole Camera

A straight-forward approach to extending the field of view is to use a camera model
consisting of an array of several pinhole cameras, which have the same principal
point but different orientations. The projection function πmp(x) : R3 → ∪iΩi is then
given by piecewise rotation followed by pinhole projection, i.e.,

πmp(x) := πpi(x)
(Ri(x)x) (7.3)

where i(x) : R3 → [1, k] segments the 3D space into k subspaces. While in general
the segmentation and orientation of the associated cameras can be chosen arbitrarily,
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2

1

Figure 7.3: Pinhole and Piecewise Pinhole Projection. Left: Pinhole Model. A
3D point is directly projected onto the image plane through C. Right: Piecewise Pinhole
Model. A 3D point is projected through the center of the camera on one of the image
planes depending on the subspace it lies in, effectively forming a cube-shaped image plane.
X1 and X2 are projected to different images Ω1 and Ω2.

we choose to split R3 into six equally sized quadrants, forming a cube-shaped image
plane. This has the advantage that i(x) can be computed from binary comparisons
on x, y and z, while the Ri correspond to orthogonal rotations.

While this model has a number of desirable properties – it is piecewise linear
in homogeneous coordinates, simple to compute and offers reasonably homogeneous
angular resolution – it does not fit natural lenses. In order to use it, incoming images
have to be rectified in a preprocessing step. Further, the piecewise nature of the
model causes discontinuities in the image space Ω = ∪iΩi, complicating its use in
practice.

7.2.3 Central Omnidirectionnal Camera: Unified Model

A number of different projection functions has been proposed in the literature for
modeling and calibrating catadioptric and dioptric omnidirectional cameras. Desir-
able properties of such a function include (1) its capability to accurately describe a
wide range of actual physical imaging devices, (2) the ease of parameter calibration
and (3) the existence of a closed-form expression for the unprojection function π−1.
As this paper targets real-time direct SLAM, an additional criterion is the compu-
tational cost of projecting and unprojecting points, as well as the cost of evaluating
the corresponding derivatives.

Accurate results were obtained by moving all non-linearities into a radially sym-
metric function, and identifying the first coefficients of its Taylor expansion [102].
While this approach can model every camera that fits the single viewpoint assump-
tion, it lacks a closed-form unprojection function – and approximating it is compu-
tationally costly.

Instead, we use the model originally proposed in [46] for central catadioptric
systems and extended in [123], [17] for a wider range of physical devices including
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sC

Figure 7.4: Unified Model Projection Function. A 3D point is first projected on
the unit sphere, and then the image plane via a secondary, shifted camera center Cs.

fisheye camera. The central idea behind this model is to concatenate two successive
projections: The first one projects the point from the world onto a camera-centered
unit sphere. The second one is an ordinary pinhole projection trough a center shifted
along the z axis by −ξ. This model is described by a total of five parameters, fx,
fy, cx, cy and ξ. The projection of a point is computed as

πu(x) =




fx
x

z + ‖x‖ξ
fy

y

z + ‖x‖ξ




+

[
cx
cy

]
, (7.4)

where ‖x‖ is the euclidean norm of x. The corresponding unprojection function can
be computed in closed form, and is given by

πu
−1(u, d)=

1

d



ξ+
√

1+(1−ξ2) (ũ2+ṽ2)

ũ2+ṽ2+1



ũ
ṽ
1


−



0
0
ξ





 , (7.5)

where

[
ũ
ṽ

]
=

[
(u− cx)/fx
(v − cy)/fy

]
. (7.6)

One major advantage of this model is the availability of an easy-to-compute pro-
jection and unprojection function. Note that for ξ = 0 it reduces to the pinhole
model. In order to improve the generality of the model, we we combine it with
a small radial-tangential distortion to correct lens imperfections – similar to the
pinhole case, images are warped once in the beginning, to perfectly fit this model.
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7.3 Direct Omnidirectional SLAM

In this Chapter, we describe our omnidirectional, large-scale direct SLAM system,
which is based on LSD-SLAM [4]. First, in Sec. 7.3.1 we review the LSD-SLAM
pipeline adapted to omnidirectional cameras. We then derive a direct image
registration formulation for the unified camera model in Sec. 7.3.2. In Sec. 7.3.4,
we show how – in this framework – stereo can be done efficiently on the unified (1)
and piecewise rectified (2) model.

Notation. D : Ωd → R+ will denote the inverse distance map of the current
keyframe.With a slight abuse of notation, elements of se(3) will directly be repre-
sented as 6-vector µ, and we use exp and log to associate an element of the lie
algebra to the corresponding element of the lie group. We then define the composi-
tion operator ◦ as

µ1 ◦ µ2 := log (exp(µ1) · exp(µ2)) . (7.7)

As a shorthand, we use Rµ and tµ to denote the corresponding rotation matrix
and translation vector of a transformation, and [·]i to extract the i’th row of a
matrix/vector.

7.3.1 Method Overview

Our method continuously builds and maintains a pose-graph of keyframes. Each
keyframe contains a probabilistic semi-dense inverse distance map, which maintains
a Gaussian probability distribution over the inverse distance for all pixels which have
sufficient intensity gradient. It is estimated over time by filtering over a large number
of small-baseline stereo comparisons. In turn, new images – as well as loop-closure
constraints – are computed using direct image alignment. Note that in contrast to
[4], we use the inverse distance d = ‖x‖−1 instead of depth, such that we can model
points behind the camera. An overview is shown in Fig. 7.5.

SE(3) Tracking

When a new camera frame is captured, its rigid-body pose relative to the closest
keyframe is tracked using direct image alignment, which will be described in 7.3.2.

Probabilistic Distance Map Estimation

Keyframes are selected at regular intervals, based on the moved distance to the
previous keyframe (relative to its mean inverse distance), as well as the relative
overlap. For each keyframe, an inverse distance map is initialized by propagating
the inverse distance map from its immediate predecessor. Subsequently, it is updated
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Figure 7.5: Method Overview. The LSD-SLAM pipeline for omnidirectional Cam-
eras: Tracking and depth estimation inherently depend on the camera model used, their
omnidirectional versions and are detailed in Sec. 7.3.2 and 7.3.4 receptively.

– and extended to new regions – by incorporating information obtained from many
small-baseline stereo comparisons. This step will be described in more detail in Sec
7.3.4.

Scale-Drift Aware Pose-Graph Optimization

In the background, we continuously perform pose graph optimization between all
keyframes, and attempt to find new constraints between keyframes which are likely
to overlap. Constraints are expressed as similarity transforms to account for scale-
drift – more details on this part can be found in [4].

Initialization

The system is initialized with a random depth map with mean one and a large
covariance – this generally converges to a good estimate, as long as the camera
motion within the first few seconds is not too degenerate.

7.3.2 Omnidirectional Direct Image Alignment on SE(3)

Every new frame Inew is tracked relative to the closest keyframe IKf with associated
inverse distance map DKf by direct minimization of the photometric error, defined
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as

Eframe(µ) :=
∑

u∈Ωd

ρ



[
rIu(µ)

σrI
u(µ)

]2

 , (7.8)

where ρ denotes the robust Huber norm, and with

rIu(µ) = IKf(u)− Inew (π(ω(µ,u))) (7.9)

ω(µ,u) = Rµπ
−1(u, DKf(u)) + tµ. (7.10)

The function ω unprojects a point, and transforms it by µ. As in [4], the residuals
are normalized with their propagated inverse distance variance.

This weighted least-squares problem is then minimized in a coarse-to-fine
scheme using the iteratively re-weighted Levenberg-Marquardt algorithm in a left-
compositional formulation: In each iteration, we solve for a left-multiplied increment

δµ(k) =
(
JTWJ + λdiag(JTWJ)

)−1
JTWr, (7.11)

where r = [rIu1
. . . rIun

]T is the stacked residual vector and W a diagonal matrix
containing the weights. J is the n × 6 Jacobian of the stacked residual vector
evaluated at µ(k):

J =
∂r(ǫ ◦ µ(k))

∂ǫ
(7.12)

which is then left-multiplied on the current estimate

µ
(k+1) = δµ(k) ◦ µ

(k). (7.13)

Using the chain rule, each 1 × 6 row Ju of the Jacobian can be decomposed into
three parts

Jfwd
u = −JInew

∣∣∣
π
Jπ
∣∣∣
ω
Jω
∣∣∣
µ
, (7.14)

where

• Jω
∣∣∣
µ(k)

is a 3 × 6 Jacobian, denoting the left-compositional derivative of the

transformed point, evaluated at µ = µ(k)

Jω
∣∣∣
µ

=
∂ω(ǫ ◦ µ,u)

∂ǫ
. (7.15)

• Jπ
∣∣∣
ω

is the 2 × 3 Jacobian of the projection function π evaluated at ω =

ω(µ(k),u).
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• JInew

∣∣∣
π

is the 1 × 2 intensity gradient of the new image, evaluated at point

π = π(ω(µ(k),u)).

Notice how the evaluation point of each of these Jacobians depends on µ(k), hence
everything has to be re-evaluated in each iteration. In practice, the computational
cost is the dominated by this evaluation – which is especially true in our case, as
for the unified model the projection, and hence its derivative Jπ

∣∣∣
ω

is much more
complex.

To avoid this, we use an inverse compositional formulation – a trick that is well
known in the literature [16]: In each iteration, instead of applying the increment to
the points in the reference frame, its inverse is applied to the points in the keyframe.
That is, instead of linearizing

IKf(u)− Inew(π(ω(ǫ ◦ µ(k),u))), (7.16)

with respect to ǫ, we linearize

IKf(π(ω(ǫ,u)))− Inew(π(ω(µ(k),u))). (7.17)

The Jacobian now becomes

Jbkwd
u = JIKf

∣∣∣
π
Jπ
∣∣∣
ω
Jω
∣∣∣
0

, (7.18)

with ω = ω(0,u) and π = π(ω(0,u)). It is thus independent of µ(k). This allows us
to precompute it once per pyramid level, saving much of the required computations.
Note that we still have to re-evaluate the outer product JTWJ on each iteration,
as the weight matrix changes. The inverse of the resulting update is then right-
multiplied onto the current estimate, i.e.,

µ
(k+1) = µ

(k) ◦ (−δµ(k)). (7.19)

7.3.3 Omnidirectional Direct Image Alignment on Sim(3)

In monocular SLAM, the absolute scale is not observable and drifts over time – which
has to be taken into account when finding loop-closures. As in [4], we use Sim(3)
image alignment between keyframes, to estimate not only their relative pose, but also
the scale difference between their inverse distance maps. This is done by introducing
an additional error term – the geometric error – which penalizes differences in inverse
distance. The energy function for aligning (IK1, DK1) and (IK2, DK2) thus becomes

EKf(µ) :=
∑

u∈Ωd

ρ



[
rIu(µ)

σrI
u(µ)

]2

+

[
rDu (µ)

σrD
u (µ)

]2

 , (7.20)
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where µ ∈ sim(3), and

rIu(µ) = IK1(u)− IK2 (π(ωs(µ,u))) (7.21)

rDu (µ) = ‖ωs(µ,u)‖−1 −DK2 (π(ωs(µ.u))) . (7.22)

Note that we now optimize over relative scale as well, and hence have to apply a
similarity warp, defined as

ωs(µ,u) = sµRµπ
−1(u, DK2(u)) + tµ, (7.23)

where sµ is the scaling factor of µ. Note that in contrast to [4], this residual now
penalizes differences in inverse distance. Again, we apply statistical normalization
based on the propagated variances as in [4]. For tracking Sim(3)-constraints, we use
a forward-compositional formulation.

We further note that as in [4], the approximated Hessian (JTWJ)−1 of the last
iteration can be interpreted as covariance on a left-multiplied increment on µ, and
is used in the subsequent pose-graph optimization.

7.3.4 Semi-Dense Depth Map Estimation

Once a frame is registered to a keyframe, stereo matching is performed to refine the
keyframe distance map DKf. As matching cost we use the sum of squared differ-
ences (SSD) over five equidistant pixels along the epipolar line. If a prior exists,
the epipolar search is constrained to the interval [d− 2σd, d+ 2σd]. This greatly
improves efficiency and minimizes the probability of finding an incorrect match, as
in practice only very short line segments have to be searched. Subsequently, we
refine the found match to sub-pixel precision.

Similar to [9], each new measurement is fused into the existing depth map. Mea-
surement variances σ2

m are obtained using the geometric and photometric error, as
derived in [9]. Finally, we smooth the inverse distance map, and remove outliers.

Non-Rectified Stereo

When performing stereo on the unified model, epipolar lines are not in fact lines but
curves. More precisely, Geyer et al. showed that these epipolar curves are conics [46],
as they are the pinhole-projection of a geodesic on the unit sphere, as visualized in
Fig. 7.6. We here present a general method to incrementally and efficiently compute
points along the epipolar curve, at a constant step-size of 1 px: While this is trivial
for straight lines, it is not straight-forward for the general case of epipolar curves.

We first define the two points p0,p∞ ∈ R3 on the unit sphere around the projec-
tive center Cref, which correspond to the maximum and minimum inverse distance
of the search interval dmax,dmin:

p0 := πs(Rπ
−1
u (u, dmax) + t) (7.24)

p∞ := πs(Rπ
−1
u (u, dmin) + t). (7.25)
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Figure 7.6: Non-Rectified Stereo Matching. We efficiently browse the epipolar
curve in the image uL using a parametric equation. It is obtained by projecting the line
connecting p0 and p∞ on the unit sphere around the camera center.

Here, πs projects a point onto the unit sphere, π−1
u is the unprojection function of

the unified model (7.5), and u is the pixel in IKf we are trying to match. We then
express the straight line between these points as

pL(α) = αp0 + (1− α)p∞, (7.26)

for α ∈ [0, 1]. This also gives a parametric expression for the epipolar curve in Iref

as

uL(α) := πu(pL(α)). (7.27)

Note that we apply the full unified projection function, which first projects a point
on pL onto the geodesic, and then into the image. This is visualized in Fig. 7.6.

Starting at uL(0), we then browse the epipolar curve by incrementing α. A step-
size of 1 pixel is enforced by using a first-order Taylor expansion of uL, and choosing
the increment in α as

δα =
∥∥∥JuL

∣∣∣
α

∥∥∥
−1
, (7.28)

which we re-evaluate for each increment. Note that this method is independent
of the shape of the epipolar curve, and hence can be used for any central camera
model. Nevertheless, it is much more expensive than browsing a straight line, as
each point is projected individually. In LSD-SLAM however, the search interval is
always small, as either a good prior is available, or the pixel has just been initialized
and hence the baseline is small.

Pre-Rectified Stereo

For a large disparity search range, the above method can become very costly since
it requires re-evaluation of the projection function for each point. Thus, the valid
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Figure 7.7: Piecewise rectification. Example of fisheye camera rectification. The
borders are still distorted, as it is clearly visible on the checker-board, which leads to
interpolation artifacts or blur.

question arises whether piecewise rectification of the input image as described in
Sec.7.2.2, followed by straight-forward line-browsing would be faster. For this we
determined suitable values for the focal lengths fx and fy of each pinhole camera
individually, minimizing the change in angular resolution at each point in the image.
An example is shown in Fig. 7.7: Still, some distortion is clearly visible, note for
example how the checker-board shape is altered. Further, we extend the rectified
images by extending their visible field by 20 pixels, which is not displayed in the
figure. We then perform line-stereo the same way as is done in [9]. In Sec. 7.4 we
will compare these two approaches regarding accuracy and efficiency.

7.4 Results

In this Chapter, we evaluate our algorithm regarding accuracy and computational
requirements on both synthetic and real data. We first describe the experimental
setup in. 7.4.1 and 7.4.2. We then evaluate the accuracy and the computational
requirements in Sec. 7.4.3 and 7.4.4 respectively.

7.4.1 Hardware Setup

For real data experiment, we use a global shutter usb3 camera equipped with a 185
FoV fisheye lens. The ξ parameter for this system has been estimated to 2.06 by
off-line calibration, using the Kalibr toolbox [82]. Images are cropped and scaled to
a 480×480 region centered around the principal point. We recorded a number of
trajectories with rapid, handheld motion, including quick rotation - an overview over
one of the sequences can be seen Fig. 7.8. We also show two of the sequences (T2 and
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Figure 7.8: Reconstruction of T5 sequence. Top: Final point cloud. Bottom: Color-
coded inverse distance maps. Note how we can obtain geometry for the full 185 ◦ field of
view. This corresponds to the right plot in Fig. 7.9.
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T5) in the attached video. For ground truth acquisition, we use a motion capture
system which covers an area of approximately 7×12 m – as some trajectories leave
this area, we only compute errors on the part for which ground truth data is available.
The synthetic data was generated using the ROS gazebo simulator, modified to have
as extra output the synchronized pose, 185 ◦ images, and distance ground truth. The
movement is slower on this dataset and mimics that of a quadrotor. For comparison
with a pinhole model, we also synthesize a sequence of rectified images, artificially
cropping the field of view to 100 ◦ horizontally and vertically. We intend to make
the dataset including ground truth publicly available.

7.4.2 Evaluated Parameters

We evaluate the effect of three different parameters:

• Camera Model: We use either the unified omnidirectional model (Uni,
Sec. 7.3.4), or a piecewise rectified model (Multi, Sec. 7.3.4). As baseline,
we use the cropped & rectified video with a pinhole model (Pin).

• Input Resolution: We use either an input resolution of 480×480 (Full) or
240×240 (Half ).

• Resolution Used for Tracking: We choose to stop the coarse to fine approach
in tracking either at the input image (level 0 of the image pyramid) or at the
first octave of it (level 1), allowing to speed-up tracking significantly, while
maintaining most of the accuracy.

All the experiments were conducted on a Intel i7 CPU, on a commercially available
laptop.

7.4.3 Accuracy Comparison

In order to assess the accuracy of our method, we measure the translational root
mean square error (RMSE) of the final position of all keyframes, after 7DoF align-
ment with the ground-truth. Because of the hard real-time constraint and the
high frame-rate of the camera, frames may be dropped and different frames will
be selected as keyframes – potentially having a significant effect on the result. We
therefore average the RMSE of five runs. The results are shown in Tab. 7.2 and
some representative visual result are shown in Fig. 7.9; also see the attached video.

Two things can be observed: First, results obtained with the omnidirectional
camera clearly outperform the pinhole model. This shows that our algorithm can
benefit from additional information in the image due to an increased field of view
– the in some cases very significant difference is not surprising, as the recorded
trajectories contain large amounts of rotation, which is very challenging for a normal
camera.
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Figure 7.9: Horizontal position for T2, T3 and T5. The red line shows the result
of Uni-Full-0, the green line that of Pin-Full-0, and the blue dotted line the ground truth
where available. For T2 and T3, the pinhole version is lost for a large portion of the
trajectory, as they include fast rotations which cannot be tracked well with the cropped
field of view. For T5 the trajectory is correctly reconstructed with both camera models.
The accuracy however is significantly better for the unified model (see Tab.7.2; The final
pointcloud is shown in Fig. 7.8.

480×480 240×240 160×160

Mul Uni Pin Mul Uni Pin Mul Uni Pin

Mapping 31 28 20 11 8 7 - - -
Tracking 24 24 17 10 10 6 3 3 2.2

Table 7.1: Mean timing results in Milliseconds.

The other observation is also expected: A higher resolution gives consistently
better results than a lower resolution, although not by much. Interestingly, both half
resolution omnidirectional methods outperform the full resolution pinhole model,
showing that, at least in challenging scenes, a larger field of view is more important
than high resolution. An example of 3D reconstruction with half and full resolution
is given for the synthetic scene in Fig. 7.10.

7.4.4 Timing Measurement

Table 7.1 shows the measured average time taken by tracking and mapping. These
times are measured on the same dataset as used for the accuracy assessment, and are
in millisecond. These results shows that our distorted stereo matching algorithm is
slightly more efficient than the multi rectified version. This is due to the rectification
required beforehand, and the fact that almost always, the browsed epipolar segments
do not exceed a couple of pixels in length. Real time is easily achieved since each
frame can be tracked at least 40 Hz, and mapped at more than 30 Hz for a 480×480
image.
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T1 T2 T3 T4 T5 S1 S2
Mul-Full-0 0.0493 0.0656 0.0456 0.0424 0.0535 0.0208 0.0484
Mul-Full-1 0.0491 0.0699 0.0475 0.0479 0.0600 0.0387 0.0895
Mul-Half-0 0.0765 0.0966 0.0554 0.0546 0.0849 0.0209 0.0433
Mul-Half-1 0.0756 0.0977 0.0650 0.0952 0.1211 0.0345 0.1144

Uni-Full-0 0.0531 0.0506 0.0463 0.0454 0.0358 0.0340 0.0492
Uni-Full-1 0.0508 0.0634 0.0497 0.0514 0.0544 0.0429 0.0728
Uni-Half-0 0.0845 0.0731 0.0569 0.0588 0.0684 0.0382 0.0602
Uni-Half-1 0.1856 0.0837 0.0598 0.0730 0.1236 0.0428 0.0709

Pin-Full-0 0.5784 0.2282 0.0832 0.6049 0.5498 0.0474 0.7016
Pin-Full-1 0.6445 0.1526 0.0724 1.9756 0.9423 0.0861 0.6749
Pin-Half-0 1.1729 0.7301 0.6022 0.0863 1.1555 0.1297 1.5106
Pin-Half-1 1.5125 0.8351 0.6005 0.0941 2.3820 0.1685 1.1376

Table 7.2: Absolute RMSE in Meters.

Figure 7.10: Reconstruction evaluation. Final point cloud obtained on S1 trajectory
for two different resolutions (left 480×480, right 240×240): The resolution has a very
sensitive impact on the completeness and accuracy of the 3D reconstruction.
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7.5 Conclusion

We proposed in this paper a direct, semi-dense monocular SLAM system for om-
nidirectional cameras. Based on two different omnidirectional camera models, our
system allows to directly use a wide range of classical dioptric or catadioptric imag-
ing systems. The contribution of this paper is two-fold: (1) we explicitly formulate
a camera model independent registration algorithm and (2) derived a generic, ac-
curate, and efficient way to perform stereo, based on a parametric equation of the
epipolar curves. We integrated these ideas into the LSD-SLAM framework and ran
the algorithm in real-time on a number of videos captured by a 185 ◦ fisheye cam-
era. We measure both an improvement of the accuracy of the localization and of its
robustness to strong rotational movement compared to a standard camera. We also
observe that even at relatively low resolutions (240×240), the localization accuracy
surpasses the accuracy obtained when using a pinhole model, with a cropped field
of view.
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Chapter 8. Direct Sparse Odometry

Abstract. We propose a novel direct sparse visual odometry formula-
tion. It combines a fully direct probabilistic model (minimizing a photo-
metric error) with consistent, joint optimization of all model parameters,
including geometry – represented as inverse depth in a reference frame
– and camera motion. This is achieved in real time by omitting the
smoothness prior used in other direct methods and instead sampling
pixels evenly throughout the images. Since our method does not depend
on keypoint detectors or descriptors, it can naturally sample pixels from
across all image regions that have intensity gradient, including edges or
smooth intensity variations on mostly white walls. The proposed model
integrates a full photometric calibration, accounting for exposure time,
lens vignetting, and non-linear response functions. We thoroughly eval-
uate our method on three different datasets comprising several hours of
video. The experiments show that the presented approach significantly
outperforms state-of-the-art direct and indirect methods in a variety of
real-world settings, both in terms of tracking accuracy and robustness.

8.1 Introduction

Simultaneous localization and mapping (SLAM) and visual odometry (VO) are fun-
damental building blocks for many emerging technologies – from autonomous cars
and UAVs to virtual and augmented reality. Realtime methods for SLAM and VO
have made significant progress in recent years. While for a long time the field was
dominated by feature-based (indirect) methods, in recent years a number of different
approaches have gained in popularity, namely direct and dense formulations.

Direct vs. Indirect. Underlying all formulations is a probabilistic model that
takes noisy measurements Y as input and computes an estimator X for the unknown,
hidden model parameters (3D world model & camera motion). Typically a Maxi-
mum Likelihood approach is used, which finds the model parameters that maximize
the probability of obtaining the actual measurements, i.e., X∗ := argmaxX P (Y|X).

Indirect methods then proceed in two steps: First, the raw sensor measurements
are pre-processed to generate an intermediate representation, solving part of the
overall problem, such as establishing correspondences. Second, the computed inter-
mediate values are interpreted as noisy measurements Y in a probabilistic model
to estimate geometry and camera motion. Note that the first step is typically ap-
proached by extracting and matching a sparse set of keypoints – however other
options exist, like establishing correspondencees in the form of dense, regularized
optical flow.

Direct methods skip the pre-processing step and directly use the actual sensor
values – light received from a certain direction over a certain time period – as
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Figure 8.1: Direct sparse odometry (DSO). 3D reconstruction and tracked trajectory
for a 1:40min video cycling around a building (monocular visual odometry only). The
bottom-left inset shows a close-up of the start and end point, visualizing the drift accu-
mulated over the course of the trajectory. The right images show some selected video
frames.

measurements Y in a probabilistic model.

In the case of passive vision, the direct approach thus optimizes a photomet-
ric error, since the sensor provides photometric measurements. Indirect methods
on the other hand optimize a geometric error, since the pre-computed values –
point-positions or flow-vecors – are geometric quantities. Note that for other sensor
modalities like depth cameras or laser scanners (which directly measure geometric
quantities) direct formulations may also optimize a geometric error.

Dense vs. Sparse. Sparse methods use and reconstruct only a selected set of
independent points (traditionally corners), whereas dense methods attempt to use
and reconstruct all pixels in the 2D image domain. Intermediate approaches (semi-
dense) refrain from reconstructing the complete surface, but still aim at using and
reconstructing a (largely connected & well-constrained) subset of it.

Apart from the extent of the used image region however, a more fundamental
– and consequential – difference lies in the addition of a geometry prior. In the
sparse formulation, there is no notion of neighborhood, and geometry parameters
(keypoint positions) are conditionally independent given the camera poses &
intrinsics1. Dense (or semi-dense) approaches on the other hand exploit the
conectedness of the used image region to formulate a geometry prior, typically
favouring smoothness. In fact, such a prior is necessarily required to make a dense
world model observable from passive vision alone. In general, this prior is for-
mulated directly in the form of an additional log-likelihood energy term [88, 93, 112].

1Note that even though early filtering-based methods [31] kept track of point-point-correlations,
these originated from marginalized camera poses, not from the model itself.
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Note that the distinction between dense and sparse is not synonymous to direct
and indirect – in fact, all four combinations exist:

• Sparse + Indirect: This is the most widely-used formulation, estimating
3D geometry from a set of keypoint-matches, thereby using a geometric error
without a geometry prior. Examples include monoSLAM [31], PTAM [69],
and ORB-SLAM [86].

• Dense + Indirect: This formulation estimates 3D geometry from – or in
conjunction with – a dense, regularized optical flow field, thereby combining a
geometric error (deviation from the flow field) with a geometry prior (smooth-
ness of the flow field). Examples include [95, 119].

• Dense + Direct: This formulation employs a photometric error as well as a
geometric prior to estimate dense or semi-dense geometry. Examples include
DTAM [88], its precursor [112], and LSD-SLAM [4].

• Sparse + Direct: This is the formulation proposed in this paper. It optimizes
a photometric error defined directly on the images, without incorporating a
geometric prior. The motivation for exploring this combination is laid out in
the following section.

8.1.1 Motivation

The direct and sparse formulation for monocular visual odometry proposed in
this paper is motivated by the following considerations.

(1) Direct: One of the main benefits of keypoints is their ability to provide
robustness to photometric and geometric distortions present in images taken with
off-the-shelf commodity cameras. Examples are automatic exposure changes, non-
linear response functions (gamma correction / white-balancing), lens attenuation
(vignetting), de-bayering artefacts, or even strong geometric distortions caused by
a rolling shutter.

At the same time, for all use-cases mentioned in the introduction, millions of
devices will be (and already are) equipped with cameras solely meant to provide data
for computer vision algorithms, instead of capturing images for human consumption.
These cameras should and will be designed to provide a complete sensor model, and
to capture data in a way that best serves the processing algorithms: Auto-exposure
and gamma correction for instance are not unknown noise sources, but features that
provide better image data – and that can be incorporated into the model, making
the obtained data more informative. Since the direct approach models the full image
formation process down to pixel intensities, it greatly benefits from a more precise
sensor model.

One of the main benefits of a direct formulation is that it does not require a point
to be recognizable by itself, thereby allowing for a more finely grained geometry
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pose (diag) pose-geo geo (diag) geo (off-diag)

Figure 8.2: Sparse vs. dense Hessian structure. Left: Hessian structure of sparse bun-
dle adjustment: since the geometry-geometry block is diagonal, it can be solved efficiently
using the Schur complement. Right: A geometry prior adds (partially unstructured)
geometry-geometry correlations – the resulting system is hence not only much larger, but
also becomes much harder to solve. For simplicity, we do not show the global camera
intrinsic parameters.

representation (pixelwise inverse depth). Furthermore, we can sample from across
all available data – including edges and weak intensity variations – generating a more
complete model and lending more robustness in sparsely textured environments.

(2) Sparse: The main drawback of a adding geometry prior is the introduction
of correlations between geometry parameters, which render a statistically consistent,
joint optimization in real time infeasible (see Figure 8.2). This is why existing dense
or semi-dense approaches (a) neglect or coarsely approximate correlations between
geometry parameters (orange), and / or between geometry parameters and camera
poses (green), and (b) employ different optimization methods for the dense geometry
part, such as a primal-dual formulation [88, 93, 112].

In addition, the expressive complexity of today’s priors is limited: While
they make the 3D reconstruction denser, locally more accurate and more visually
appealing, we found that priors can introduce a bias, and thereby reduce rather than
increase long-term, large-scale accuracy. Note that in time this may well change
with the introduction of more realistic, unbiased priors learnt from real-world data.

8.1.2 Contribution and Outline

In this paper we propose a sparse and direct approach to monocular visual odometry.
To our knowledge, it is the only fully direct method that jointly optimizes the
full likelihood for all involved model parameters, including camera poses, camera
intrinsics, and geometry parameters (inverse depth values). This is in contrast to
hybrid approaches such as SVO [41], which revert to an indirect formulation for joint
model optimization.
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Chapter 8. Direct Sparse Odometry

Optimization is performed in a sliding window, where old camera poses as well
as points that leave the field of view of the camera are marginalized, in a manner
inspired by [75]. In contrast to existing approaches, our method further takes full
advantage of photometric camera calibration, including lens attenuation, gamma
correction, and known exposure times. This integrated photometric calibration fur-
ther increases accuracy and robustness.

Our CPU-based implementation runs in real time on a laptop computer. We
show in extensive evaluations on three different datasets comprising several hours
of video that it outperforms other state-of-the-art approaches (direct and indirect),
both in terms of robustness and accuracy. With reduced settings (less points &
active keyframes), it even runs at 5× real-time speed while still outperforming
state-of-the-art indirect methods. On high, non-real-time settings in turn (more
points & active keyframes), it creates semi-dense models similar in density to those
of LSD-SLAM, but much more accurate.

The paper is organized as follows: The proposed direct, sparse model as well as
the windowed optimization method are described in Section 8.2. Specifically, this
comprises the geometric and photometric camera calibration in Section 8.2.1, the
model formulation in Section 8.2.2, and the windowed optimization in Section 8.2.3.
Section 8.3 describes the front-end: the part of the algorithm that performs data-
selection and provides sufficiently accurate initializations for the highly non-convex
optimization back-end. We provide a thorough experimental comparison to other
methods in Section 8.4.1. We also evaluate the effect of important parameters and
new concepts like the use of photometric calibration in Section 8.4.2. In Section 8.4.3,
we analyse the effect of added photometric and geometric noise to the data. Finally,
we provide a summary in Section 8.5.

8.2 Direct Sparse Model

Our direct sparse odometry is based on continuous optimization of the photometric
error over a window of recent frames, taking into account a photometrically cali-
brated model for image formation. In contrast to existing direct methods, we jointly
optimize for all involved parameters (camera intrinsics, camera extrinsics, and in-
verse depth values), effectively performing the photometric equivalent of windowed
sparse bundle adjustment. We keep the geometry representation employed by other
direct approaches, i.e., 3D points are represented as inverse depth in a reference
frame (and thus have 1 degree of freedom).

Notation. Throughout the paper, bold lower-case letters (x) represent vectors and
bold upper-case letters (H) represent matrices. Scalars will be represented by light
lower-case letters (t), functions (including images) by light upper-case letters (I).
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Figure 8.3: Photometric calibration. Top: Inverse response function G−1 and lens
attenuation V of the camera used for Figure 8.1. Bottom: Exposure t in milliseconds for
a sequence containing an indoor and an outdoor part. Note how it varies by a factor of
more than 500, from 0.018 to 10.5ms. Instead of treating these quantities as unknown
noise sources, we explicitly account for them in the photometric error model.

Camera poses are represented as transformation matrices Ti ∈ SE(3), transforming
a point from the world frame into the camera frame. Linearized pose-increments
will be expressed as Lie-algebra elements xi ∈ se(3), which – with a slight abuse of
notation – we directly write as vectors xi ∈ R6. We further define the commonly
used operator ⊞ : se(3)×SE(3)→ SE(3) using a left-multiplicative formulation, i.e.,

xi ⊞Ti := ex̂i ·Ti. (8.1)

8.2.1 Calibration

The direct approach comprehensively models the image formation process. In ad-
dition to a geometric camera model – which comprises the function that projects a
3D point onto the 2D image – it is hence beneficial to also consider a photometric
camera model, which comprises the function that maps real-world energy received
by a pixel on the sensor (irradiance) to the respective intensity value. Note that
for indirect methods this is of little benefit and hence widely ignored, as common
feature extractors and descriptors are invariant (or highly robust) to photometric
variations.

Geometric Camera Calibration

For simplicity, we formulate our method for the well-known pinhole camera model –
radial distortion is removed in a preprocessing step. While for wide-angle cameras
this does reduce the field of view, it allows comparison across methods that only
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Figure 8.4: Residual pattern. Pattern Np used for energy computation. The bottom-
right pixel is omitted to enable SSE-optimized processing. Note that since we have 1
unknown per point (its inverse depth), and do not use a regularizer, we require |Np| > 1
in order for all model parameters to be well-constrained when optimizing over only two
frames. Figure 8.18 shows an evaluation of how this pattern affects tracking accuracy.

implement a limited choice of camera models. Throughout this paper, we will denote
projection by Πc : R3 → Ω and back-projection with Π−1

c : Ω × R → R3, where
c denotes the intrinsic camera parameters (for the pinhole model these are the
focal length and the principal point). Note that analogously to [1], our approach
can be extended to other (invertible) camera models, although this does increase
computational demands.

Photometric Camera Calibration

We use the image formation model used in [10], which accounts for a non-linear
response function G : R→ [0, 255], as well as lens attenuation (vignetting) V : Ω→
[0, 1]. Figure 8.3 shows an example calibration from the TUM monoVO dataset.
The combined model is then given by

Ii(x) = G
(
tiV (x)Bi(x)

)
, (8.2)

where Bi and Ii are the irradiance and the observed pixel intensity in frame i, and
ti is the exposure time. The model is applied by photometrically correcting each
video frame as very first step, by computing

I ′
i(x) := tiBi(x) =

G−1(Ii(x))

V (x)
. (8.3)

In the remainder of this paper, Ii will always refer to the photometrically corrected
image I ′

i, except where otherwise stated.

8.2.2 Model Formulation

We define the photometric error of a point p ∈ Ωi in reference frame Ii, observed
in a target frame Ij, as the weighted SSD over a small neighborhood of pixels.
Our experiments have shown that 8 pixel, arranged in a slightly spread pattern
(see Figure 8.4) give a good trade-off between computations required for evaluation,
robustness to motion blur, and providing sufficient information. Note that in terms
of the contained information, evaluating the SSD over such a small neighborhood
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of pixels is similar to adding first- and second-order irradiance derivative constancy
terms (in addition to irradiance constancy) for the central pixel. Let

Epj :=
∑

p∈Np

wp

∥∥∥∥(Ij[p
′]−bj)−

tje
aj

tieai

(
Ii[p]−bi

)∥∥∥∥
γ

, (8.4)

where Np is the set of pixels included in the SSD; ti, tj the exposure times of the
images Ii, Ij; and ‖ · ‖γ the Huber norm. Further, p′ stands for the projected point
position of p with inverse depth dp, given by

p′ = Πc

(
R Π−1

c (p, dp) + t
)
, (8.5)

with
[
R t
0 1

]
:= TjT

−1
i . (8.6)

In order to allow our method to operate on sequences without known exposure times,
we include an additional affine brightness transfer function given by e−ai(Ii − bi).

In addition to using robust Huber penalties, we apply a gradient-dependent
weighting wp given by

wp :=
c2

c2 + ‖∇Ii(p)‖2
2

, (8.7)

which down-weights pixels with high gradient. This weighting function can be proba-
bilistically interpreted as adding small, independent geometric noise on the projected
point position p′, and immediately marginalizing it – approximating small geomet-
ric error. To summarize, the error Epj depends on the following variables: (1) the
point’s inverse depth dp, (2) the camera intrinsics c, (3) the poses of the involved
frames Ti,Tj, and (4) their brightness transfer function parameters ai, bi, aj, bj.

The full photometric error over all frames and points is given by

Ephoto :=
∑

i∈F

∑

p∈Pi

∑

j∈obs(p)

Epj. (8.8)

where i runs over all frames F , p over all points Pi in frame i, and j over all frames
obs(p) in which the point p is visible. Figure 8.5 shows the resulting factor graph:
The only difference to the classical reprojection error is the additional dependency
of each residual on the pose of the host frame, i.e., each term depends on two frames
instead of only one. While this adds off-diagonal entries to the pose-pose block of
the Hessian, it does not affect the sparsity pattern after application of the Schur
complement to marginalize point parameters. The resulting system can thus be
solved analogously to the indirect model. Note that the Jacobians with respect to
the two frames’ poses are linearly related by the adjoint of their relative pose. In
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Figure 8.5: Factor graph for the direct sparse model. Example with four keyframes
and four points; one in KF1, two in KF2, and one in KF4. Each energy term (defined
in Eq. (8.4)) depends on the point’s host frame (blue), the frame the point is observed
in (red), and the point’s inverse depth (black). Further, all terms depend on the global
camera intrinsics vector c, which is not shown.

practice, this factor can then be pulled out of the sum when computing the Hessian
or its Schur complement, greatly reducing the additional computations caused by
more variable dependencies.

If exposure times are known, we further add a prior pulling the affine brightness
transfer function to zero:

Eprior :=
∑

i∈F

(
λaa

2
i + λbb

2
i

)
. (8.9)

If no photometric calibration is available, we set ti = 1 and λa = λb = 0, as in this
case they need to model the (unknown) changing exposure time of the camera. As
a side-note it should be mentioned that the ML estimator for a multiplicative factor
a∗ = argmaxa

∑
i(axi − yi)2 is biased if both xi and yi contain noisy measurements

(see [8]); causing a to drift in the unconstrained case λa = 0. While this generally
has little effect on the estimated poses, it may introduce a bias if the scene contains
only few, weak intensity variations.

Point Dimensionality. In the proposed direct model, a point is parametrized by
only one parameter (the inverse depth in the reference frame), in contrast to three
unknowns as in the indirect model. To understand the reason for this difference,
we first note that in both cases a 3D point is in fact an arbitrarily located discrete
sample on a continuous, real-world 3D surface. The difference then lies in the way
this 2D location on the surface is defined. In the indirect approach, it is implicitly
defined as the point, which (projected into an image) generates a maximum in the
used corner response function. This entails that both the surface, as well as the
point’s location on the surface are unknowns, and need to be estimated. In our
direct formulation, a point is simply defined as the point, where the source pixel’s ray
hits the surface, thus only one unknown remains. In addition to a reduced number
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of parameters, this naturally enables an inverse depth parametrization, which – in
a Gaussian frame-work – is better suited to represent uncertainty from stereo-based
depth estimation, in particular for far-away points [24].

Consistency. Strictly speaking, the proposed direct sparse model does allow to
use some observations (pixel values) multiple times, while others are not used at all.
This is because – even though our point selection strategy attempts to avoid this by
equally distributing points in space (see Section 8.3.2) – we allow point observations
to overlap, and thus depend on the same pixel value(s). This particularly happens in
scenes with little texture, where all points have to be chosen from a small subset of
textured image regions. We however argue that this has negligible effect in practice,
and – if desired – can be avoided by removing (or downweighting) observations that
use the same pixel value.

8.2.3 Windowed Optimization

We follow the approach by Leutenegger et.al. [75] and optimize the total error (8.8)
in a sliding window using the Gauss-Newton algorithm, which gives a good trade-off
between speed and flexibility.

For ease of notation, we extend the ⊞ operator as defined in (8.1) to all optimized
parameters – for parameters other than SE(3) poses it denotes conventional addition.
We will use ζ ∈ SE(3)n×Rm to denote all optimized variables, including camera
poses, affine brightness parameters, inverse depth values, and camera intrinsics.
As in [75], marginalizing a residual that depends on a parameter in ζ will fix the
tangent space in which any future information (delta-updates) on that parameter
is accumulated. We will denote the evaluation point for this tangent space with ζ0,
and the accumulated delta-updates by x ∈ se(3)n×Rm. The current state estimate
is hence given by ζ = x ⊞ζ0. Figure 8.6 visualizes the relation between the different
variables.

Gauss-Newton Optimization. We compute the Gauss-Newton system as

H = JTWJ and b = JTWr, (8.10)

where W ∈ Rn×n is the diagonal matrix containing the weights, r ∈ Rn is the
stacked residual vector, and J ∈ Rn×d is the Jacobian of r.

Note that each point contributes |Np| = 8 residuals to the energy. For notational
simplicity, we will in the following consider only a single residual rk, and the associ-
ated row of the Jacobian Jk. During optimization – as well as when marginalizing
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– residuals are always evaluated at the current state estimate, i.e.,

rk = rk(x ⊞ζ0) (8.11)

=
(
Ij[p

′(Ti,Tj, d, c)]−bj
)
− tje

aj

tieai

(
Ii[p]−bi

)
,

where (Ti,Tj, d, c, ai, aj, bi, bj) := x ⊞ζ0 are the current state variables the residual
depends on. The Jacobian Jk is evaluated with respect to an additive increment to
x, i.e.,

Jk =
∂rk((δ + x) ⊞ζ0)

∂δ
. (8.12)

It can be decomposed as

Jk =

[
∂Ij
∂p′

︸︷︷︸
JI

∂p′((δ+x) ⊞ζ0)

∂δgeo︸ ︷︷ ︸
Jgeo

,
∂rk((δ+x) ⊞ζ0)

∂δphoto︸ ︷︷ ︸
Jphoto

]
, (8.13)

where δgeo denotes the “geometric” parameters (Ti,Tj, d, c), and δphoto denotes the
“photometric” parameters (ai, aj, bi, bj). We employ two approximations, described
below.

First, both Jphoto and Jgeo are evaluated at x = 0. This technique is called
“First Estimate Jacobians” [56, 75], and is required to maintain consistency of the
system and prevent the accumulation of spurious information. In particular, in the
presence of non-linear null-spaces in the energy (in our formulation absolute pose
and scale), adding linearizations around different evaluation points eliminates these
and thus slowly corrupts the system. In practice, this approximation is very good,
since Jphoto, Jgeo are smooth compared to the size of the increment x. In contrast,
JI is much less smooth, but does not affect the null-spaces. Thus, it is evaluated at
the current value for x, i.e., at the same point as the residual rk. We use centred
differences to compute the image derivative at integer positions, which are then
bilinearly interpolated.

Second, Jgeo is assumed to be the same for all residuals belonging to the same
point, and evaluated only for the center pixel. Again, this approximation is very
good in practice – while it significantly reduces the required computations, we have
not observed any notable effect on accuracy for any of the used datasets.

From the resulting linear system, an increment is computed as δ = H−1b and
added to the current state:

xnew ← δ + x. (8.14)

Note that due to the First Estimate Jacobian approximation, a multiplicative for-
mulation (replacing (δ+x) ⊞ζ0 with δ ⊞(x ⊞ζ0) in (8.12)) results in the exact same
Jacobian, thus a multiplicative update step xnew ← log(δ ⊞ex) is equally valid.
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Figure 8.6: Windowed optimization. The red line denotes the parameter space, com-
posed of non-Euclidean camera poses in SE(3), and the remaining euclidean parameters.
The blue line corresponds to the tangent-space around ζ0, in which we (1) accumulate
the quadratic marginalization-prior on x, and (2) compute Gauss-Newton steps δ. For
each parameter, the tangent space is fixed as soon as that parameter becomes part of the
marginalization term. Note that while we treat all parameters equally in our notation, for
euclidean parameters tangent-space and parameter-space coincide.

After each update step, we update ζ0 for all variables that are not part of the
marginalization term, using ζnew

0 ← x ⊞ ζ0 and x ← 0. In practice, this includes
all depth values, as well as the pose of the newest keyframe. Each time a new
keyframe is added, we perform up to 6 Gauss-Newton iterations, breaking early
if δ is sufficiently small. We found that – since we never start far-away from the
minimum – a Levenberg-Marquad dampening (which slows down convergence) is
not required.

Marginalization. When the active set of variables becomes too large, old vari-
ables are removed by marginalization using the Schur complement. Similar to [75],
we drop any residual terms that would affect the sparsity pattern of H: When
marginalizing frame i, we first marginalize all points in Pi, as well as points that
have not been observed in the last two keyframes. Remaining observations of active
points in frame i are dropped from the system.

Marginalization proceeds as follows: Let E ′ denote the part of the energy con-
taining all residuals that depend on state variables to be marginalized. We first
compute a Gauss-Newton approximation of E ′ around the current state estimate
ζ = x ⊞ζ0. This gives

E ′(x ⊞ζ0) (8.15)

≈ 2(x−x0)
Tb + (x−x0)

TH(x−x0) + c

= 2xT (b−Hx0)︸ ︷︷ ︸
=:b′

+xTHx + (c+xT0 Hx0−xT0 b)
︸ ︷︷ ︸

=:c′

,

where x0 denotes the current value (evaluation point for r) of x. The constants c, c′

can be dropped, and H,b are defined as in (8.10-8.13). This is a quadratic function
on x, and we can apply the Schur complement to marginalize a subset of variables.
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Written as a linear system, it becomes
[
Hαα Hαβ

Hβα Hββ

] [
xα
xβ

]
=

[
b′
α

b′
β

]
, (8.16)

where β denotes the block of variables we would like to marginalize, and α the
block of variables we would like to keep. Applying the Schur complement yields
Ĥααxα = b̂′

α, with

Ĥαα = Hαα −HαβH−1
ββHβα (8.17)

b̂′
α = b′

α −HαβH−1
ββb′

β. (8.18)

The residual energy on xα can hence be written as

E ′
(
xα ⊞(ζ0)α

)
= 2xTα b̂′

α + xTαĤααxα. (8.19)

This is a quadratic function on x and can be trivially added to the full photomet-
ric error Ephoto during all subsequent optimization and marginalization operations,
replacing the corresponding non-linear terms. Note that this requires the tangent
space for ζ0 to remain the same for all variables that appear in E ′ during all subse-
quent optimization and marginalization steps.

8.3 Visual Odometry Front-End

The front end is the part of the algorithm that

• determines the sets F ,Pi, and obs(p) that make up the error terms of Ephoto.
It decides which points and frames are used, and in which frames a point is
visible – in particular, this includes outlier removal and occlusion detection.

• provides initializations for new parameters, required for optimizing the highly
non-convex energy function Ephoto. As a rule of thumb, a linearization of the
image I is only valid in a 1-2 pixel radius; hence all parameters involved in
computing p′ should be initialized sufficiently accurately for p′ to be off by no
more than 1-2 pixels.

• decides when a point / frame should be marginalized.

As such, the front-end needs to replace many operations that in the indirect setting
are accomplished by keyframe detectors (determining visibility, point selection) and
initialization procedures such as RANSAC. Note that many procedures described
here are specific to the monocular case. For instance, using a stereo camera makes
obtaining initial depth values more straightforward, while integration of an IMU
can significantly robustify – or even directly provide – a pose initialization for new
frames.
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Figure 8.7: Example depth maps used for initial frame tracking. The top row
shows the original images, the bottom row the color-coded depth maps. Since we aim at
a fixed number of points in the active optimization, they become more sparse in densely
textured scenes (left), while becoming similar in density to those of LSD-SLAM in scenes
where only few informative image regions are available to sample from (right).

8.3.1 Frame Management

Our method always keeps a window of up to Nf active keyframes (we use Nf = 7).
Every new frame is initially tracked with respect to these reference frames (Step
1). It is then either discarded or used to create a new keyframe (Step 2). Once a
new keyframe – and respective new points – are created, the total photometric error
(8.8) is optimized. Afterwards, we marginalize one or more frames (Step 3).

Step 1: Initial Frame Tracking. When a new keyframe is created, all active
points are projected into it and slightly dilated, creating a semi-dense depth map.
New frames are tracked with respect to only this frame using conventional two-frame
direct image alignment, a multi-scale image pyramid and a constant motion model
to initialize. Figure 8.7 shows some examples – we found that further increasing the
density has little to no benefit in terms of accuracy or robustness, while significantly
increasing runtime. Note that when down-scaling the images, a pixel is assigned
a depth value if at least one of the source pixels has a depth value as in [11],
significantly increasing the density on coarser resolutions.

If the final RMSE for a frame is more than twice that of the frame before, we
assume that direct image alignment failed and attempt to recover by initializing with
up to 27 different small rotations in different directions. This recovery-tracking is
done on the coarsest pyramid level only, and takes approximately 0.5ms per try.
Note that this RANSAC-like procedure is only rarely invoked, such as when the
camera moves very quickly shakily. Tightly integrating an IMU would likely render
this unnecessary.
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Step 2: Keyframe Creation. Similar to ORB-SLAM, our strategy is to initially
take many keyframes (around 5-10 keyframes per second), and sparsify them after-
wards by early marginalizing redundant keyframes. We combine three criteria to
determine if a new keyframe is required:

1. New keyframes need to be created as the field of view changes. We measure
this by the mean square optical flow (from the last keyframe to the latest

frame) f := ( 1
n

∑n
i=1 ‖p− p′‖2)

1
2 during initial coarse tracking.

2. Camera translation causes occlusions and dis-occlusions, which requires more
keyframes to be taken (even though f may be small). This is measured by

the mean flow without rotation, i.e., ft := ( 1
n

∑n
i=1 ‖p− p′

t‖2)
1
2 , where pt is the

warped point position with R = I3×3.

3. If the camera exposure time changes significantly, a new keyframe should be
taken. This is measured by the relative brightness factor between two frames
a := | log(eaj−aitjt

−1
i )|.

These three quantities can be obtained easily as a by-product of initial alignment.
Finally, a new keyframe is taken if wff + wft

ft + waa > Tkf, where wf , wft
, wa pro-

vide a relative weighting of these three indicators, and Tkf = 1 by default.

Step 3: Keyframe Marginalization. Our marginalization strategy is as follows
(let I1 . . . In be the set of active keyframes, with I1 being the newest and In being
the oldest):

1. We always keep the latest two keyframes (I1 and I2).

2. Frames with less than 5% of their points visible in I1 are marginalized.

3. If more than Nf frames are active, we marginalize the one (excluding I1 and
I2) which maximizes a “distance score” s(Ii), computed as

s(Ii) =
√
d(i, 1)

∑

j∈[3,n]\{i}

(d(i, j) + ǫ)−1, (8.20)

where d(i, j) is the Euclidean distance between keyframes Ii and Ij, and ǫ a
small constant. This scoring function is heuristically designed to keep active
keyframes well-distributed in 3D space, with more keyframes close to the most
recent one.

A keyframe is marginalized by first marginalizing all points represented in it, and
then the frame itself, using the marginalization procedure from Section 8.2.3. To
preserve the sparsity structure of the Hessian, all observations of still existing points
in the frame are dropped from the system. While this is clearly suboptimal (in
practice about half of all residuals are dropped for this reason), it allows to efficiently
optimize the energy function. Figure 8.8 shows an example of a scene, highlighting
the active set of points and frames.
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8.3. Visual Odometry Front-End

Figure 8.8: Keyframe management. Bottom rows: The 6 old keyframes in the opti-
mization window, overlaid with the points hosted in them (already marginalized points
are shown in black). The top image shows the full point cloud, as well as the positions of
all keyframes (black camera frustums) – active points and keyframes are shown in red and
blue respectively. The inlay shows the newly added keyframe, overlaid with all forward-
warped active points, which will be used for initial alignment of subsequent frames.
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8.3.2 Point Management

Most existing direct methods focus on utilizing as much image data as possible. To
achieve this in real time, they accumulate early, sub-optimal estimates (linearizations
/ depth triangulations), and ignore – or approximate – correlations between different
parameters. In this work, we follow a different approach, and instead heavily sub-
sample data to allow processing it in real time in a joint optimization framework. In
fact, our experiments show that image data is highly redundant, and the benefit of
simply using more data points quickly flattens off. Note that in contrast to indirect
methods, our direct framework still allows to sample from across all available data,
including weakly textured or repetitive regions and edges, which does provide a real
benefit (see Section 8.4).

We aim at always keeping a fixed number Np of active points (we use Np = 2000),
equally distributed across space and active frames, in the optimization. In a first
step, we identify Np candidate points in each new keyframe (Step 1). Candidate
points are not immediately added into the optimization, but instead are tracked
individually in subsequent frames, generating a coarse depth value which will serve
as initialization (Step 2). When new points need to be added to the optimization,
we choose a number of candidate points (from across all frames in the optimization
window) to be activated, i.e., added into the optimization (Step 3). Note that we
choose Np candidates in each frame, however only keep Np active points across all
active frames combined. This assures that we always have sufficient candidates to
activate, even though some may become invalid as they leave the field of view or are
identified as outliers.

Step 1: Candidate Point Selection. Our point selection strategy aims at se-
lecting points that are (1) well-distributed in the image and (2) have sufficiently high
image gradient magnitude with respect to their immediate surroundings. We obtain
a region-adaptive gradient threshold by splitting the image into 32× 32 blocks. For
each block, we then compute the threshold as ḡ+gth, where ḡ is the median absolute
gradient over all pixels in that block, and gth a global constant (we use gth = 7).

To obtain an equal distribution of points throughout the image, we split it into
d×d blocks, and from each block select the pixel with largest gradient if it surpasses
the region-adaptive threshold. Otherwise, we do not select a pixel from that block.
We found that it is often beneficial to also include some points with weaker gradient
from regions where no high-gradient points are present, capturing information from
weak intensity variations originating for example from smoothly changing illumina-
tion across white walls. To achieve this, we repeat this procedure twice more, with
decreased gradient threshold and block-size 2d and 4d, respectively. The block-size
d is continuously adapted such that this procedure generates the desired amount of
points (if too many points were created it is increased for the next frame, otherwise
it is decreased). Figure 8.9 shows the selected point candidates for some example
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8.3. Visual Odometry Front-End

Figure 8.9: Candidate selection. The top row shows the original images, the bottom
row shows the points chosen as candidates to be added to the map (2000 in each frame).
Points selected on the first pass are shown in green, those selected on the second and third
pass in blue and red respectively. Green candidates are evenly spread across gradient-rich
areas, while points added on the second and third pass also cover regions with very weak
intensity variations, but are much sparser.

scenes.

Step 2: Candidate Point Tracking. Point candidates are tracked in subsequent
frames using a discrete search along the epipolar line, minimizing the photometric
error (8.4). From the best match we compute a depth and associated variance, which
is used to constrain the search interval for the subsequent frame. This tracking
strategy is inspired by LSD-SLAM. Note that the computed depth only serves as
initialization once the point is activated.

Step 3: Candidate Point Activation. After a set of old points is marginalized,
new point candidates are activated to replace them. Again, we aim at maintaining
a uniform spacial distribution across the image. To this end, we first project all
active points onto the most recent keyframe. We then activate candidate points
which – also projected into this keyframe – maximize the distance to any existing
point (requiring larger distance for candidates created during the second or third
block-run). Figure 8.7 shows the resulting distribution of points in a number of
scenes.

Outlier and Occlusion Detection. Since the available image data generally
contains much more information than can be used in real time, we attempt to identify
and remove potential outliers as early as possible. First, when searching along
the epipolar line during candidate tracking, points for which the minimum is not
sufficiently distinct are permanently discarded, greatly reducing the number of false
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matches in repetitive areas. Second, point observations for which the photometric
error (8.4) surpasses a threshold are removed. The threshold is continuously adapted
with respect to the median residual in the respective frame. For “bad” frames (e.g.,
frames that contain a lot of motion blur), the threshold will be higher, such that not
all observations are removed. For good frames, in turn, the threshold will be lower,
as we can afford to be more strict.

8.4 Results

In this section we will extensively evaluate our Direct Sparse mono-VO algorithm
(DSO). We both compare it to other monocular SLAM / VO methods, as well as
evaluate the effect of important design and parameter choices. We use three datasets
for evaluation:

(1) The TUM monoVO dataset [10], which provides 50 photometrically cal-
ibrated sequences, comprising 105 minutes of video recorded in dozens of different
environments, indoors and outdoors. Since the dataset only provides loop-closure-
ground-truth (allowing to evaluate tracking accuracy via the accumulated drift after
a large loop), we evaluate using the alignment error (ealign) as defined in the respec-
tive publication.

(2) The EuRoC MAV dataset [22], which contains 11 stereo-inertial sequences
comprising 19 minutes of video, recorded in 3 different indoor environments. For
this dataset, no photometric calibration or exposure times are available, hence we
omit photometric image correction and set (λa = λb = 0). We evaluate in terms of
the absolute trajectory error (eate), which is the translational RMSE after Sim(3)
alignment. For this dataset we crop the beginning of each sequence since they
contain very shaky motion meant to initialize the IMU biases – we only use the
parts of the sequence where the MAV is in the air.

(3) The ICL-NUIM dataset [52], which contains 8 ray-traced sequences com-
prising 4.5 minutes of video, from two indoor environments. For this dataset, photo-
metric image correction is not required, and all exposure times can be set to t = 1.
Again, we evaluate in terms of the absolute trajectory error (eate).

Methodology. We aim at an evaluation as comprehensive as possible given the
available data, and thus run all sequences both forwards and backwards, 5 times
each (to account for non-deterministic behaviour). On default settings, we run each
method 10 times each. For the EuRoC MAV dataset we further run both the left
and the right video separately. In total, this gives 500 runs for the TUM-monoVO
dataset, 220 runs for the EuRoC MAV dataset and 80 runs for the ICL-NUIM
dataset, which we run on 20 dedicated workstations. We remove the dependency on
the host machine’s CPU speed by not enforcing real-time execution, except where
stated otherwise: for ORB-SLAM we play the video at 20% speed, whereas DSO
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Figure 8.10: Results on EuRoC MAV and ICL NUIM datasets. Translational
RMSE after Sim(3) alignment. RT (dashed) denotes hard-enforced real-time execution.
Further, we evaluate DSO with low settings at 5 times real-time speed, and ORB-SLAM
when restricting local loop-closures to points that have been observed at least once within
the last tmax=10s.

is run in a sequentialized, single-threaded implementation that runs approximately
four times slower than real time. Note that even though we do not enforce real-time
execution for most of the experiments, we use the exact same parameter settings as
for the real-time comparisons.

The results are summarized in the form of cumulative error plots (see, e.g.,
Figure 8.10), which visualize for how many tracked sequences the final error was
below a certain threshold; thereby showing both accuracy on sequences where a
method works well, as well as robustness, i.e., on how many sequences the method
does not fail. The raw tracking results for all runs – as well as scripts to compute
the figures – are provided in the supplementary material2. Additional interesting
analysis using the TUM-monoVO dataset – e.g. the influence of the camera’s field
of view, the image resolution or the camera’s motion direction – can be found in
[10].

Evaluated Methods and Parameter Settings. We compare our method to the
open-source implementation of (monocular) ORB-SLAM [86]. We also attempted to
evaluate against the open-source implementations of LSD-SLAM [4] and SVO [41],
however both methods consistently fail on most of the sequences. A major reason
for this is that they assume brightness constancy (ignoring exposure changes), while
both real-world datasets used contain heavy exposure variations.

To facilitate a fair comparison and allow application of the loop-closure metric
from the TUM-monoVO dataset, we disable explicit loop-closure detection and re-
localization for ORB-SLAM. Note that everything else (including local and global
BA) remains unchanged, still allowing ORB-SLAM to detect incremental loop-
closures that can be found via the co-visibility representation alone. All parameters
are set to the same value across all sequences and datasets. The only exception is

2http://vision.in.tum.de/ds-vo

151

http://vision.in.tum.de/ds-vo


Chapter 8. Direct Sparse Odometry
n
u
m

b
er

o
f
ru

n
s

0 2 4 6 8 10
0

100

200

300

400

500

ealign

0 4 8 12 16 20
0

100

200

300

400

500

er (degree)
1 1.5 2 2.5 3 3.5 4

0

100

200

300

400

500

 

 

DSO

DSO (real−time)

ORB−SLAM

ORB−SLAM (real−time)

e′

s
(multiplier)

Figure 8.11: Results on TUM-monoVO dataset. Accumulated rotational drift er and
scale drift es after a large loop, as well as the alignment error as defined in [10]. Since
es is a multiplicative factor, we aggregate e′

s = max(es, e
−1
s ). The solid line corresponds

to sequentialized, non-real-time execution, the dashed line to hard enforced real-time pro-
cessing. For DSO, we also show results obtained at low parameter settings, running at 5
times real-time speed.

the ICL-NUIM dataset: For this dataset we set gth = 3 for DSO, and lower the
FAST threshold for ORB-SLAM to 2, which we found to give best results.

8.4.1 Quantitative Comparison

Figure 8.10 shows the absolute trajectory RMSE eate on the EuRoC MAV dataset
and the ICL-NUIM dataset for both methods (if an algorithm gets lost within a
sequence, we set eate =∞). Figure 8.11 shows the alignment error ealign, as well as
the rotation-drift er and scale-drift es for the TUM-monoVO dataset.

In addition to the non-real-time evaluation (bold lines), we evaluate both al-
gorithms in a hard-enforced real-time setting on an Intel i7-4910MQ CPU (dashed
lines). The direct, sparse approach clearly outperforms ORB-SLAM in accuracy and
robustness both on the TUM-monoVO dataset, as well as the synthetic ICL NUIM
dataset. On the EuRoC MAV dataset, ORB-SLAM achieves a better accuracy (but
lower robustness): This is due to two major reasons: (1) there is no photometric
calibration available, and (2) the sequences contain many small loops or segments
where the quadrocopter “back-tracks” the way it came, allowing ORB-SLAM’s local
mapping component to implicitly close many small and some large loops, whereas
our visual odometry formulation permanently marginalizes all points and frames
that leave the field of view. We can validate this by prohibiting ORB-SLAM from
matching against any keypoints that have not been observed for more than tmax = 10s
(lines with circle markers in Figure 8.10): In this case, ORB-SLAM performs similar
to DSO in terms of accuracy, but is less robust. The slight difference in robustness
for DSO when running in real-time, as supposed to non-real-time, comes from the
fact that for real-time execution, tracking new frames and keyframe-creation are
parallelized, thus new frames are tracked on the second-latest keyframe, instead of
the latest. In some rare cases – in particular during strong exposure changes – this
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Figure 8.12: Full evaluation result. All error values for the EuRoC MAV dataset
(left) and the ICL NUIM dataset (right): Each square corresponds to the (color-coded)
absolute trajectory error eate over the full sequence. We run each of the 11 + 8 sequences
(horizontal axis) forwards (“Fwd”) and backwards (“Bwd”), 10 times each (vertical axis);
for the EuRoC MAV dataset we further use the left and the right image stream. Figure 8.10
shows these error values aggregated as cumulative error plot (bold, continuous lines).
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Figure 8.13: Full evaluation result. All error values for the TUM-monoVO dataset:
Each square corresponds to the (color-coded) alignment error ealign, as defined in [10]. We
run each of the 50 sequences (horizontal axis) forwards (“Fwd”) and backwards (“Bwd”),
10 times each (vertical axis). Figure 8.11 shows all these error values aggregated as
cumulative error plot (bold, continuous lines).
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Figure 8.14: Photometric calibration. Errors on the TUM-monoVO dataset, when
incrementally disabling photometric calibration.

causes initial image alignment to fail.
To show the flexibility of DSO, we include results when running at 5 times real-

time speed3, with reduced settings (Np=800 points, Nf=6 active frames, 424×320
image resolution, ≤ 4 Gauss-Newton iterations after a keyframe is created): Even
with such extreme settings, DSO achieves very good accuracy and robustness on all
three datasets.

Note that DSO is designed as a pure visual adometry while ORB-SLAM con-
stitutes a full SLAM system, including loop-closure detection & correction and
re-localization – all these additional abilities are neglected or switched off in this
comparison.

8.4.2 Parameter Studies

This section aims at evaluating a number of different parameter and algorithm design
choices, using the TUM-monoVO dataset.

Photometric Calibration. We analyze the influence of photometric calibration,
verifying that it in fact increases accuracy and robustness: to this end, we incre-
mentally disable the different components:

1. exposure (blue): set ti = 1 and λa = λb = 0.

2. vignette (green): set V (x) = 1 (and 1.).

3. response (yellow): set G−1 = identity (and 1 – 2.).

4. brightness constancy (black): set λa = λb = ∞, i.e., disable affine brightness
correction (and 1 – 3.).

Figure 8.14 shows the result. While known exposure times seem to have little effect
on the accuracy, removing vignette and response calibration does slightly decrease
the overall accuracy and robustness. Interestingly, only removing vignette calibra-
tion performs slightly worse than removing vignette and response calibration. A

3All images are loaded, decoded, and pinhole-rectified beforehand.
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Figure 8.15: Amount of data used. Errors on the TUM-monoVO dataset, when chang-
ing the size of the optimization window (top) and the number of points (bottom). Using
more than Np = 500 points or Nf = 7 active frames has only marginal impact. Note
that as real-time default setting, we use Np = 2000 and Nf = 7, mainly to obtain denser
reconstructions.

näıve brightness constancy assumption (as used in many other direct approaches
like LSD-SLAM or SVO) clearly performs worst, since it does not account for auto-
matic exposure changes at all.

Amount of Data. We analyze the effect of changing the amount of data used, by
varying the number of active points Np, as well as the number of frames in the active
window Nf . Note that increasing Nf allows to keep more observations per point:
For any point we only ever keep observations in active frames; thus the number
of observations when marginalizing a point is limited to Nf (see Section 8.2.3).
Figure 8.15 summarizes the result. We can observe that the benefit of simply using
more data quickly flattens off after Np = 500 points. At the same time, the number
of active frames has little influence after Nf = 7, while increasing the runtime
quadratically. We further evaluate a fixed-lag marginalization strategy (i.e., always
marginalize the oldest keyframe, instead of using the proposed distancescore) as in
[75]: this performs significantly worse.

Selection of Data. In addition to evaluating the effect of the number of residuals
used, it is interesting to look at which data used – in particular since one of the
main benefits of a direct approach is the ability to sample from all points, instead of
only using corners. To this end, we vary the gradient threshold for point selection,
gth; the result is summarized in Figure 8.16. While there seems to be a sweet spot
around gth = 7 (if gth is too large, for some scenes not enough well-distributed points
are available to sample from – if it is too low, too much weight will be given to data
with a low signal-to-noise ratio), the overall impact is relatively low.

More interestingly, we analyse the effect of only using corners, by restricting
point candidates to FAST corners only. We can clearly see that only using corners
significantly decreases performance. Note that for lower FAST thresholds, many
false “corners” will be detected along edges, which our method can still use, in
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Figure 8.16: Selection of data used. Errors on the TUM-monoVO dataset, when
changing the type of data used. Top: Errors for different gradient thresholds gth, which
seems to have a limited impact on the algorithms accuracy. Bottom: Errors when only
using FAST corners, at different thresholds. Using only FAST corners significantly reduces
accuracy and robustness, showing that the ability to use data from edges and weakly
textured surfaces does have a real benefit.
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Figure 8.17: Number of keyframes. Errors on the TUM-monoVO dataset, when chang-
ing the number of keyframes taken via the threshold Tkf.

contrast to indirect methods for which such points will be outliers. In fact, ORB-
SLAM achieves best performance using the default threshold of 20.

Number of Keyframes. We analyze the number of keyframes taken by varying
Tkf (see Section 8.3.1). For each value of Tkf we give the resulting average number of
keyframes per second; the default setting Tkf = 1 results in 8 keyframes per second,
which is easily achieved in real time. The result is summarized in Figure 8.17.
Taking too few keyframes (less than 4 per second) reduces the robustness, mainly in
situations with strong occlusions / dis-occlusions, e.g., when walking through doors.
Taking too many keyframes, on the other hand (more than 15 per second), decreases
accuracy. This is because taking more keyframes causes them to be marginalized
earlier (since Nf is fixed), thereby accumulating linearizations around earlier (and
less accurate) linearization points.
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Figure 8.18: Residual pattern. Some of the evaluated patterns for Np, and correspond-
ing cumulative error plots. Using only a 3 × 3 neighborhood seems to perform slightly
worse – using more than the proposed 8-pixel pattern however seems to have little benefit
– at the same time, using a larger neighbourhood increases the computational demands.

Residual Pattern. We test different residual patterns for Np, covering smaller
or larger areas. The result is shown in Figure 8.18.

8.4.3 Geometric vs. Photometric Noise Study

The fundamental difference between the proposed direct model and the indirect
model is the noise assumption. The direct approach models photometric noise, i.e.,
additive noise on pixel intensities. In contrast, the indirect approaches models ge-
ometric noise, i.e., additive noise on the (u, v)-position of a point in the image
plane, assuming that keypoint descriptors are robust to photometric noise. It there-
fore comes at no surprise that the indirect approach is significantly more robust to
geometric noise in the data. In turn, the direct approach performs better in the
presence of strong photometric noise – which keypoint-descriptors (operating on a
purely local level) fail to filter out. We verify this by analyzing tracking accuracy
on the TUM-monoVO dataset, when artificially adding (a) geometric noise, and (b)
photometric noise to the images.

Geometric Noise. For each frame, we separately generate a low-frequency ran-
dom flow-map Ng : Ω → R2 by up-sampling a 3×3 grid filled with uniformly dis-
tributed random values from [−δg, δg]2 (using bicubic interpolation). We then per-
turb the original image by shifting each pixel x by Ng(x):

I ′
g(x) := I(x +Ng(x)). (8.21)

This procedure simulates noise originating from (unmodeled) rolling shutter or in-
accurate geometric camera calibration. Figure 8.19 visualizes an example of the
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Figure 8.19: Geometric noise. Effect of applying low-frequency geometric noise to the
image, simulating geometric distortions such as a rolling shutter. The top row shows an
example image with δg = 2. While the effect is hardly visible to the human eye (observe
that the close-up is slightly shifted), it has a severe impact on SLAM accuracy, in particular
when using a direct model. Note that the distortion caused by a standard rolling shutter
camera easily surpasses δg = 3.

resulting noise pattern, as well as the accuracy of ORB-SLAM and DSO for dif-
ferent values of δg. As expected, we can clearly observe how DSO’s performance
quickly deteriorates with added geometric noise, whereas ORB-SLAM is much less
affected. This is because the first step in the indirect pipeline – keypoint detection
and extraction – is not affected by low-frequent geometric noise, as it operates on
a purely local level. The second step then optimizes a geometric noise model –
which not surprisingly deals well with geometric noise. In the direct approach, in
turn, geometric noise is not modeled, and thus has a much more severe effect – in
fact, for δg > 1.5 there likely exists no state for which all residuals are within the
validity radius of the linearization of I; thus optimization fails entirely (which can
be alleviated by using a coarser pyramid level). Note that this result also suggests
that the proposed direct model is more susceptible to inaccurate intrinsic camera
calibration than the indirect approach – in turn, it may benefit more from accurate,
non-parametric intrinsic calibration.

Photometric Noise. For each frame, we separately generate a high-frequency
random blur-map Np : Ω→ R2 by up-sampling a 300×300 grid filled with uniformly
distributed random values in [−δp, δp]2. We then perturb the original image by
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Figure 8.20: Photometric noise. Effect of applying high-frequent, non-isotropic blur
to the image, simulating photometric noise. The top row shows an example image with
δp = 6, the effect is clearly visible. Since the direct approach models a photometric error,
it is more robust to this type of noise than indirect methods.

adding anisotropic blur with standard deviation Np(x) to pixel x:

I ′
p(x) :=

∫

R2
φ(δ;Np(x)2)I(x + δ) dδ, (8.22)

where φ(·;Np(x)2) denotes a 2D Gaussian kernel with standard deviation Np(x).
Figure 8.20 shows the result. We can observe that DSO is slightly more robust
to photometric noise than ORB-SLAM – this is because (purely local) keypoint
matching fails for high photometric noise, whereas a joint optimization of the
photometric error better overcomes the introduced distortions.

To summarize: While the direct approach outperforms the indirect approach on
well-calibrated data, it is ill-suited in the presence of strong geometric noise, e.g.,
originating from a rolling shutter or inaccurate intrinsic calibration. In practice, this
makes the indirect model superior for smartphones or off-the-shelf webcams, since
these were designed to capture videos for human consumption – prioritizing resolu-
tion and light-sensitivity over geometric precision. In turn, the direct approach offers
superior performance on data captured with dedicated cameras for machine-vision,
since these put more importance on geometric precision, rather than capturing ap-
pealing images for human consumption. Note that this can be resolved by tightly
integrating the rolling shutter into the model, as done, e.g., in [64, 76].
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Figure 8.21: Point density. 3D point cloud and some coarse depth maps, i.e., the most
recent keyframe with all Np active points projected into it) for Np=500 (top), Np=2000
(middle), and Np=10000 (bottom).

8.4.4 Qualitative Results

In addition to accurate camera tracking, DSO computes 3D points on all gradient-
rich areas, including edges – resulting in point-cloud reconstructions similar to the
semi-dense reconstructions of LSD-SLAM. The density then directly corresponds
to how many points we keep in the active window Np. Figure 8.21 shows some
examples.

Figure 8.22 shows three more scenes (one from each dataset), together with some
corresponding depth maps. Note that our approach is able to track through scenes
with very little texture, whereas indirect approaches fail. All reconstructions shown
are simply accumulated from the odometry, without integrating loop-closures. See
the supplementary video for more qualitative results.

8.5 Conclusion

We have presented a novel direct and sparse formulation for Structure from Motion.
It combines the benefits of direct methods (seamless ability to use & reconstruct
all points instead of only corners) with the flexibility of sparse approaches (effi-
cient, joint optimization of all model parameters). This is possible in real time by
omitting the geometric prior used by other direct methods, and instead evaluat-
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Figure 8.22: Qualitative examples. One scene from each dataset (left to right: V2 01 -

easy [22], seq 38 [10] and office 1 [52]), computed in real time with default settings. The
bottom shows some corresponding (sparse) depth maps – some scenes contain very little
texture, making them very challenging for indirect approaches.

ing the photometric error for each point over a small neighborhood of pixels, to
well-constrain the overall problem. Furthermore, we incorporate full photometric
calibration, completing the intrinsic camera model that traditionally only reflects
the geometric component of the image formation process.

We have implemented our direct & sparse model in the form of a monocular
visual odometry algorithm (DSO), incrementally marginalizing / eliminating old
states to maintain real-time performance. To this end we have developed a front-
end that performs data-selection and provides accurate initialization for optimizing
the highly non-convex energy function. Our comprehensive evaluation on several
hours of video shows the superiority of the presented formulation relative to state-
of-the-art indirect methods. We furthermore present an exhaustive parameter study,
indicating that (1) simply using more data does not increase tracking accuracy (al-
though it makes the 3D models denser), (2) using all points instead of only corners
does provide a real gain in accuracy and robustness, and (3) incorporating photo-
metric calibration does increase performance, in particular compared to the basic
“brightness constancy” assumption. We have also shown experimentally that the
indirect approach – modelling a geometric error – is much more robust to geometric
noise, e.g., originating from poor intrinsic camera calibration or rolling shutter. The
performance of the direct model, in turn, quickly deteriorates in the presence of
such noise. In practice, this means that the indirect approach will likely perform
better on data captured by off-the-shelf cameras (unless the rolling shutter is mod-
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eled explicitly), while the potential of direct methods only becomes apparent when
also considering the used sensor.

Since the structure of the proposed direct sparse energy formulation is the same
as that of indirect methods, it can be integrated with other optimization frameworks
like (double-windowed) bundle adjustment [108] or incremental smoothing and map-
ping [60]. The main challenge here is the greatly increased degree of non-convexity
compared to the indirect model, which originates from the inclusion of the image in
the error function – this is likely to restrict the use of our model to video processing.
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Chapter 9. A Photometrically Calibrated Benchmark for Monocular VO

Abstract. We present a dataset for evaluating the tracking accuracy
of monocular visual odometry and SLAM methods. It contains 50 real-
world sequences comprising more than 100 minutes of video, recorded
across dozens of different environments – ranging from narrow indoor
corridors to wide outdoor scenes. All sequences contain mostly exploring
camera motion, starting and ending at the same position. This allows
to evaluate tracking accuracy via the accumulated drift from start to
end, without requiring ground truth for the full sequence. In contrast
to existing datasets, all sequences are photometrically calibrated. We
provide exposure times for each frame as reported by the sensor, the
camera response function, and dense lens attenuation factors. We also
propose a novel, simple approach to non-parametric vignette calibration,
which requires minimal set-up and is easy to reproduce. Finally, we
thoroughly evaluate two existing methods (ORB-SLAM [86] and DSO
[3]) on the dataset, including an analysis of the effect of image resolution,
camera field of view, and the camera motion direction.

9.1 Introduction

Structure from Motion or Simultaneous Localization and Mapping (SLAM) has
become an increasingly important topic, since it is a fundamental building block
for many emerging technologies – from autonomous cars and quadrocopters to vir-
tual and augmented reality. In all these cases, sensors and cameras built into the
hardware are designed to produce data well-suited for computer vision algorithms,
instead of capturing images optimized for human viewing. In this paper we present a
new monocular visual odometry (VO) / SLAM evaluation benchmark, that attempts
to resolve two current issues:

Sensors Intrinsics. Many existing methods are designed to operate on, and are
evaluated with, data captured by commodity cameras without taking advantage
of knowing – or even being able to influence – the full image formation pipeline.
Specifically, methods are designed to be robust to (assumed unknown) automatic
exposure changes, non-linear response functions (gamma correction), lens attenua-
tion (vignetting), de-bayering artifacts, or even strong geometric distortions caused
by a rolling shutter. This is particularly true for modern keypoint detectors and de-
scriptors, which are robust or invariant to arbitrary monotonic brightness changes.
However, recent direct methods as well attempt to compensate for automatic ex-
posure changes, e.g., by optimizing an affine mapping between brightness values in
different images [5]. Most direct methods however simply assume constant exposure
time [4, 65, 88, 93].

While this is the only way to evaluate on existing datasets and with off-the-shelf
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9.1. Introduction

Figure 9.1: The TUM monoVO dataset. A single frame from each of the 50 sequences.
Note the wide variety of covered environments. The full dataset contains over 190’000
frames (105 minutes) of video taken with two different lenses, exposure times for each
frame, and a photometric calibration including camera response and vignetting.
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Chapter 9. A Photometrically Calibrated Benchmark for Monocular VO

commodity cameras (which often do not allow to either read or set parameters like
the exposure time), we argue that for the above-mentioned use cases, this ultimately
is the wrong approach: sensors – including cameras – can, and will be designed to
fit the needs of the algorithms processing their data. In turn, algorithms should
take full advantage of the sensor’s capabilities and incorporate knowledge about
the sensor design. Simple examples are image exposure time and hardware gamma
correction, which are intentionally built into the camera to produce better images.
Instead of treating them as unknown noise factors and attempt to correct for them
afterwards, they can be treated as feature that can be modelled by, and incorporated
into the algorithm – rendering the obtained data more meaningful.

Benchmark Size. SLAM and VO are complex, very non-linear estimation
problems and often minuscule changes can greatly affect the outcome. To ob-
tain a meaningful comparison between different methods and to avoid manual
overfitting to specific environments or motion patterns (except for cases where
this is specifically desired), algorithms should be evaluated on large datasets in
a wide variety of scenes. However, existing datasets often contain only a limited
number of environments. The major reason for this is that accurate ground truth
acquisition is challenging, in particular if a wide range of different environments
is to be covered: GPS/INS is limited in accuracy and only possible in outdoor
environments with adequate GPS reception. External motion capture systems on
the other hand are costly and time-consuming to set up, and can only cover small
(indoor) environments.

The dataset published in this paper attempts to tackle these two issues. First,
it contains frame-wise exposure times as reported by the sensor, as well as accurate
calibrations for the sensors response function and lens vignetting, which enhances
the performance particularly of direct approaches. Second, it contains 50 sequences
with a total duration of 105 minutes (see Figure 9.1), captured in dozens of different
environments. To make this possible, we propose a new evaluation methodology
which does not require ground truth from external sensors – instead, tracking accu-
racy is evaluated by measuring the accumulated drift that occurs after a large loop.
We further propose a novel, straight-forward approach to calibrate a non-parametric
response function and vignetting map with minimal set up required, and without
imposing a parametric model which may not suit all lenses / sensors.

9.1.1 Related Work: Datasets

There exists a number of datasets that can be used for evaluating monocular SLAM
or VO methods. We will here list the most commonly used ones.
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KITTI [45]: 21 stereo sequences recorded from a driving car, motion patterns
and environments are limited to forward-motion and street-scenes. Images are
pre-rectified, raw sensor measurements or calibration datasets are not available.
The benchmark contains GPS-INS ground truth poses for all frames.

EUROC MAV [22]: 11 stereo-inertial sequences from a flying quadrocopter in
three different indoor environments. The benchmark contains ground truth poses
for all frames, as well as the raw sensor data and respective calibration datasets.

TUM RGB-D [114]: 89 sequences in different categories (not all meant for
SLAM) in various environments, recorded with a commodity RGB-D sensor. They
contain strong motion blur and rolling-shutter artifacts, as well as degenerate
(rotation-only) motion patterns that cannot be tracked well from monocular
odometry alone. Sequences are pre-rectified, the raw sensor data is not available.
The benchmark contains ground truth poses for all sequences.

ICL-NUIM [52]: 8 ray-traced RGB-D sequences from 2 different environments.
It provides a ground truth intrinsic calibration; a photometric calibration is not
required, as the virtual exposure time is constant. Some of the sequences con-
tain degenerate (rotation-only) motion patterns that cannot be tracked well from a
monocular camera alone.

9.1.2 Related Work: Photometric Calibration

Many approaches exist to calibrate and remove vignetting artefacts and account for
non-linear response functions. Early work focuses on image stitching and mosaick-
ing, where the required calibration parameters need to be estimated from a small set
of overlapping images [48] [67] [21]. Since the available data is limited, such methods
attempt to find low-dimensional (parametric) function representations, like radially
symmetric polynomial representations for vignetting. More recent work [63, 99] has
shown that such representations may not be sufficiently expressive to capture the
complex nature of real-world lenses and hence advocate non-parametric – dense –
vignetting calibration. In contrast to [63, 99], our formulation however does not
require a “uniformly lit white paper”, simplifying the required calibration set-up.

For response function estimation, a well-known and straight-forward method is
that of Debevec and Malik [32], which – like our approach – recovers a 28-valued
lookup table for the inverse response from two or more images of a static scene at
different exposures.
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Figure 9.2: Cameras used to capture the dataset. Left: narrow lens (98◦ × 79◦

non-rectified field of view), right: wide lens (148◦ × 122◦ non-rectified field of view).

9.1.3 Paper Outline

The paper is organized as follows: In Section 9.2, we first describe the hardware set-
up, followed by both the used distortion model (geometric calibration) in 9.2.2, as
well as photometric calibration (vignetting and response function) and the proposed
calibration procedure in 9.2.3. Section 9.3 describes the proposed loop-closure eval-
uation methodology and respective error measures. Finally, in Section 9.4, we give
extensive evaluation results of two state-of-the-art monocular SLAM / VO systems
ORB-SLAM [86] and Direct Sparse odometry (DSO) [3]. We further show some ex-
emplary image data and describe the dataset contents. In addition to the dataset,
we publish all code and raw evaluation data as open-source.

9.2 Calibration

We provide both a standard camera intrinsic calibration using the FOV camera
model, as well as a photometric calibration, including vignetting and camera re-
sponse function.

9.2.1 Hardware

The cameras used for recording the sequences are uEye UI-3241LE-M-GL
monochrome, global shutter CMOS cameras from IDS. They are capable of record-
ing 1280×1024 videos at up to 60fps. Sequences are recorded at different framerates
ranging from 20fps to 50fps with jpeg-compression. For some sequences hardware
gamma correction is enabled and for some it is disabled. We use two different
lenses (Lensagon BM2420 with a field of view of 148◦ × 122◦, as well as a Lensagon
BM4018S118 with a field of view of 98◦ × 79◦), as shown in Figure 9.2. Figure 9.1
shows a number of example images from the dataset.
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9.2. Calibration

9.2.2 Geometric Intrinsic Calibration

We use the pinhole camera model in combination with a FOV distortion model,
since it is well-suited for the used fisheye lenses. For a given 3D point (x, y, z) ∈ R3

in the camera coordinate system, the corresponding point in the image (ud, vd) ∈ Ω
is computed by first applying a pinhole projection followed by radial distortion and
conversion to pixel coordinates

[
ud
vd

]
=

1

ruω
arctan

(
2ru tan

(
ω

2

)) [
fx

x
z

fy
y
z

]
+

[
cx
cy

]
, (9.1)

where ru :=
√

(x
z
)2 + (y

z
)2 is the radius of the point in normalized image coordinates.

A useful property of this model is the existence of a closed-form inverse: for
a given point the image (ud, vd) and depth d, the corresponding 3D point can be
computed by first converting it back to normalized image coordinates

[
ũd
ṽd

]
=

[
(ud − cx)f−1

x

(vd − cy)f−1
y

]
, (9.2)

then removing radial distortion

[
ũu
ṽu

]
=

tan(rdω)

2rd tan ω
2

[
ũd
ṽd

]
, (9.3)

where rd :=
√
ũ2
d + ṽ2

d. Afterwards the point is back-projected using (x, y, z) =
d(ũu, ṽu, 1). We use the camera calibrator provided with the open-source implemen-
tation of PTAM [69] to calibrate the parameters [fx, fy, cx, cy, ω] from a number of
checkerboard images.

9.2.3 Photometric Calibration

We provide photometric calibrations for all sequences. We calibrate the camera
response function G, as well as pixel-wise attenuation factors V : Ω → [0, 1] (vi-
gnetting). Without known irradiance, both G and V are only observable up to a
scalar factor. The combined image formation model is then given by

I(x) = G
(
tV (x)B(x)

)
, (9.4)

where t is the exposure time, B the irradiance image (up to a scalar factor), and
I the observed pixel value. As a shorthand, we will use U := G−1 for the inverse
response function.
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Figure 9.3: Response calibration. The top row shows five out of over 1000 images of
the same scene at different exposures, used for calibration. The bottom-left image shows
the estimated log-irradiance log(B′); the bottom-right image shows the estimated inverse
response U , with enabled hardware gamma correction (blue) and without (green).

Response Calibration

We first calibrate the camera response function from a sequence of images taken of
a static scene with different (known) exposure time. The content of the scene is
arbitrary – however to well-constrain the problem, it should contain a wide range of
gray values. We first observe that in a static scene, the attenuation factors can be
absorbed in the irradiance image, i.e.,

I(x) = G
(
tB′(x)

)
, (9.5)

with B′(x) := V (x)B(x). Given a number of images Ii, corresponding exposure
times ti and a Gaussian white noise assumption on U(Ii(x)), this leads to the fol-
lowing Maximum-Likelihood energy formulation

E(U,B′) =
∑

i

∑

x∈Ω

(
U
(
Ii(x)

)
− tiB′(x)

)2

. (9.6)

For overexposed pixels, U is not well defined, hence they are removed from the
estimation. We now minimize (9.6) alternatingly for U and B′. Note that fixing
either U or B′ de-couples all remaining values, such that minimization becomes
trivial:

U(k)∗ = argmin
U(k)

E(U,B′) =

∑
Ωk
tiB

′(x)

|Ωk|
(9.7)

B′(x)∗ = argmin
B′(x)

E(U,B′) =

∑
i tiU

(
Ii(x)

)

∑
i t

2
i

, (9.8)
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where Ωk := {i,x|Ii(x) = k} is the set of all pixels in all images that have intensity
k. Note that the resulting U may not be monotonic – which is a pre-requisite
for invertibility. In this case it needs to be smoothed or perturbed; however for
all our calibration datasets this does not happen. The value for U(255) is never
observed since overexposed pixels are removed, and needs to be extrapolated from
the adjacent values. After minimization, U is scaled such that U(255) = 255 to
disambiguate the unknown scalar factor. Figure 9.3 shows the estimated values for
one of the calibration sequences.

Note on Observability. In contrast to [32], we do not employ a smoothness
prior on U – instead, we use large amounts of data (1000 images covering 120
different exposure times, ranging from 0.05ms to 20ms in multiplicative increments
of 1.05). This is done by recording a video of a static scene while slowly changing the
camera’s exposure. If only a small number of images or exposure times is available,
a regularized approach will be required.

Non-parametric Vignette Calibration

We estimate a non-parametric (dense) vignetting map V : Ω→ [0, 1] from a sequence
of images showing a planar scene. Apart from planarity, we only require the scene
to have a bright (potentially non-uniform) color and to be fully Lambertian – in
practice, a predominantly white wall serves well. This is in contrast to [99], which
assumes a uniformly coloured flat surface. For simplicity, we estimate the camera
pose with respect to the planar surface P ⊂ R3 using an AR Marker [44]; however
any other method, including a full monocular SLAM system can be used. For each
image Ii, this results in a mapping π : P → Ω that projects a point on the 3D plane
to a pixel in the image (if it is visible).

Again, we assume Gaussian white noise on U(Ii(πi(x))), leading to the
Maximum-Likelihood energy

E(C, V )=
∑

i,x∈P

(
tiV

([
πi(x)

])
C(x)− U

(
Ii
(
πi(x)

)))2

, (9.9)

where C : P → R is the unknown irradiance of the planar surface. In practice we
define the surface to be square, and discretise it into 1000 × 1000 points; [·] then
denotes rounding to the closest discretised position.

The energy E(C, V ) can be minimized alternatingly, again fixing one variable
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Figure 9.4: Vignette calibration. Top-left: four out of over 700 images used for vignette
calibration, overlaid with the 3D plane P in red. Top-right: estimated irradiance image C
for plane P. Bottom-right: estimated dense attenuation factors V , for both used lenses.
Bottom-left: horizontal cross-section through V at the middle of the image.
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decouples all other unknowns, such that minimization becomes trivial:

C∗(x) = argmin
C(x)

E(C, V )

=

∑
i tiV

(
[πi(x)]

)
U
(
Ii(πi(x))

)

∑
i

(
tiV ([πi(x)])

)2 , (9.10)

V ∗(x) = argmin
V (x)

E(C, V )

=

∑
i tiC(x)U

(
Ii(πi(x))

)

∑
i

(
tiC(x)

)2 . (9.11)

Again, we do not impose any explicit smoothness prior or enforce certain properties
(like radial symmetry) by finding a parametric representation for V . Instead, we
choose to solve the problem by using large amounts (several hundred images) of
data. Since V is only observable up to a scalar factor, we scale the result such
that max(V ) = 1. Figure 9.4 shows the estimated attenuation factor map for both
lenses. The high degree of radial symmetry and smoothness comes solely from the
data term, without additional prior.

Note on Observability. Without regularizer, the optimization problem (9.9) is
well-constrained if and only if the corresponding bipartite graph between all opti-
mization variables is fully connected. In practice, the probability that this is not
the case is negligible when using sufficient input images: Let (A,B,E) be a random
bipartite graph with |A| = |B| = n nodes and |E| = [n(log n + c)] edges, where
c is a positive real number. We argue that the complex nature of 3D projection
and perspective warping justifies the approximation of the resulting residual graph
as random, provided the input images cover a wide range of viewpoints. Using the
Erdős-Rényi theorem [39], it can be shown that for n → ∞, the probability of the
graph being connected is given by P = e−2e−c

[91]. In our case, n ≈ 10002, which is
sufficiently large for this approximation to be good. This implies that 30n residuals
(i.e., 30 images with the full plane visible) suffice for the problem to be almost cer-
tainly well-defined (P > 0.999999). To obtain a good solution and fast convergence,
a significantly larger number of input images is desirable (we use several hundred
images) which are easily captured by taking a short (60s) video, that covers different
image regions with different plane regions.
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Figure 9.5: Loop-closure alignment. Explicit loop-closure alignment for 4 selected
sequences, created with LSD-SLAM. The red and blue line correspond to the first and last
segment of the full trajectory.
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9.3 Evaluation Metrics

9.3.1 Evaluation from Loop-Closure

The dataset focuses on a large variety of real-world indoor and outdoor scenes, for
which it is very difficult to obtain metric ground truth poses. Instead, all sequences
contain exploring motion, and have one large loop-closure at the end: The first and
the last 10-20 seconds of each sequence show the same, easy-to-track scene, with
slow, loopy camera motion. We use LSD-SLAM [4] to track only these segments,
and – very precisely – align the start and end segment, generating a “ground truth”
for their relative pose1. To provide better comparability between the sequences,
the ground truth scale is normalized such that the full trajectory has a length of
approximately 100.

The tracking accuracy of a VO method can then be evaluated in terms of the ac-
cumulated error (drift) over the full sequence. Note that this evaluation method
is only valid if the VO/SLAM method does not perform loop-closure it-
self. To evaluate full SLAM systems like ORB-SLAM or LSD-SLAM,
loop-closure detection needs to be disabled. We argue that even for full
SLAM methods, the amount of drift accumulated before closing the loop is a good
indicator for the accuracy. In particular, it is strongly correlated with the long-term
accuracy after loop-closure.

It is important to mention that apart from accuracy, full SLAM includes a num-
ber of additional important challenges such as loop-closure detection and subsequent
map correction, re-localization, and long-term map maintenance (life-long mapping)
– all of which are not evaluated with the proposed set-up.

9.3.2 Error Metric

Evaluation proceeds as follows: Let p1 . . . pn ∈ R3 denote the tracked positions of
frames 1 to n. Let S ⊂ [1;n] and E ⊂ [1;n] be the frame-indices for the start- and
end-segments for which aligned ground truth positions p̂ ∈ R3 are provided. First,
we align the tracked trajectory with both the start- and end-segment independently,
providing two relative transformations

T gt
s := argmin

T∈Sim(3)

∑

i∈S

(Tpi − p̂i)2 (9.12)

T gt
e := argmin

T∈Sim(3)

∑

i∈E

(Tpi − p̂i)2. (9.13)

For this step it is important, that both E and S contain sufficient poses in a non-
degenerate configuration to well-constrain the alignment – hence the loopy motion

1Some sequences begin and end in a room which is equipped with a motion capture system.
For those sequences, we use the metric ground truth from the MoCap.
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Figure 9.6: Evaluation metric. The right plot shows a tracked (x, y, z)-trajectory for
sequence 16. We analyse the effect of drift on the different error metrics by adding an
artificial scale-jump of ×0.8 or rotation-jump of 10◦ at different time-points throughout
the sequence: The left plot shows how the error metrics depend on the time-point where
drift occurs (scale: dashed, rotation: solid). Both et and ermse are heavily correlated with
where the drift occurs (the further away, the more impact it has). The alignment error
ealign in contrast behaves much more stable, i.e., the error is less susceptible to where the
drift occurs.

patterns at the beginning and end of each sequence. The accumulated drift can now
be computed as Tdrift = T gt

e (T gt
s )−1 ∈ Sim(3), from which we can explicitly compute

(a) the scale-drift es := scale(Tdrift), (b) the rotation-drift er := rotation(Tdrift) and
(c) the translation-drift et := ‖translation(Tdrift)‖.

We further define a combined error measure, the alignment error, which equally
takes into account the error caused by scale, rotation and translation drift over the
full trajectory as

ealign :=

√√√√ 1

n

n∑

i=1

‖T gt
s pi − T gt

e pi‖2
2, (9.14)

which is the translational RMSE between the tracked trajectory, when aligned (a)
to the start segment and (b) to the end segment. Figure 9.7 shows an example. We
choose this metric, since

• it can be applied to other SLAM / VO modes with different observability
modes (like visual-inertial or stereo),

• it is equally affected by scale, rotation, and translation drift, implicitly
weighted by their effect on the tracked position,
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Figure 9.7: Alignment error. The top shows sequence 40, tracked using [3]. The
accumulated drift is clearly visible in the reconstruction (the two enlarged segments should
overlap). The bottom plots show the loop-closure ground truth (dashed, green), and the
tracked trajectory (1) aligned to the start-segment in blue and (2) aligned to the end
segment in red (the center plot shows the full trajectory, the left and right plot show a
close-up of the start- and end-segment respectively). The alignment error ealign computes
the RMSE between the red and the blue line, over the full trajectory. For this example,
ealign = 2.27, es = 1.12 and er = 3.9◦.
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Figure 9.8: Evaluation result. Cumulative error-plots over all 50 sequences, run forwards
and backwards, 5 times each to account for non-deterministic behaviour. For each error-
value (x-axis), the plot shows the number of runs (y-axis) for which the achieved error was
smaller. Note that since es is a multiplicative factor, we summarize e′

s = max(es, e
−1
s ).

The solid line corresponds to non-real time execution, the dashed line to hard enforced
real-time processing.

• it can be applied for algorithms which compute only poses for a subset of
frames (e.g. keyframes), as long as start- and end-segment contain sufficient
frames for alignment, and

• it better reflects the overall accuracy of the algorithm than the translational
drift drift et or the joint RMSE

ermse:=

√√√√ min
T∈Sim(3)

1

|S ∪ E|
∑

i∈S∪E

(Tpi − p̂i)2, (9.15)

as shown in Figure 9.6. In particular, ermse becomes degenerate for sequences
where the accumulated translational drift surpasses the standard deviation of
p̂, since the alignment (9.15) will simply optimize to scale(T ) ≈ 0.

9.4 Benchmark

When evaluating accuracy of SLAM or VO methods, a common issue is that not all
methods work on all sequences. This is particularely true for monocular methods,
as sequences with degenerate (rotation-only) motion or entirely texture-less scenes
(white walls) cannot be tracked. All methods will then either produce arbitrarily
bad (random) estimates or heuristically decide they are “lost”, and not provide an
estimate at all. In both cases, averaging over a set of results containing such outliers
is not meaningful, since the average will mostly reflect the (arbitrarily bad) errors
when tracking fails, or the threshold when the algorithm decides to not provide an
estimate at all.

A common approach hence is to show only results on a hand-picked subset of
sequences on which the compared methods do not fail (encouraging manual overfit-
ting), or to show large tables with error values, which is not practicable for a dataset
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Figure 9.9: Different field of view. Alignment error when changing the horizontal field
of view (i.e., using different focal lengths f for the rectified images). The top shows two
example images, rectified with the different focal lengths. “f=min” refers to the default
setting, which differs for the two used lenses – as comparison, the horizontal field of
view of a Kinect camera is 63◦. A smaller field of view significantly decreases accuracy
and robustness, for both methods (note that for a cropped field of view, some sequences
contain segments with only a white wall visible).

containing 50 sequences. A better approach is to summarize tracking accuracy as
cumulative distribution, visualizing on how many sequences the error is below a
certain threshold – it shows both the accuracy on sequences where a method works
well, as well as the method’s robustness, i.e., on how many sequences it does not
fail.

Figure 9.8 shows such cumulative error-plots for two methods, DSO (Direct
Sparse Odometry) [3] and ORB-SLAM [86], evaluated on the presented dataset.
Each of the 50 sequences is run 5 times forwards and 5 times backwards, giving a
total of 500 runs for each line shown in the plots.

Algorithm Parameter Settings. Since both methods do not support the
FOV camera model, we run the evaluation on pinhole-rectified images with VGA
(640 × 480) resolution. Further, we disable explicit loop-closure detection and re-
localization to allow application of our metric, and reduce the threshold where ORB-
SLAM decides it is lost to 10 inlier observations. Note that we do not impose any
restriction on implicit, “small” loop-closures, as long as these are found by ORB-
SLAM’s local mapping component (i.e., are included in the co-visibility graph).
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Figure 9.10: Different image resolution. Alignment error when changing the rectified
image resolution. Note that the algorithms were not run in real time, hence the change in
computational complexity is not accounted for. While for ORB-SLAM the resolution has
a strong effect, DSO is only marginally affected – which is due to the sub-pixel-accurate
nature of direct approaches.

Since DSO does not perform loop-closure or re-localization, we can use the default
settings. We run both algorithms in a non-real-time setting (at roughly one quarter
speed), allowing to use 20 dedicated workstations with different CPUs to obtain the
results presented in this paper. Figure 9.8 additionally shows results obtained when
hard-enforcing real-time execution (dashed lines), obtained on the same workstation
which is equipped with an i7-4910MQ CPU.

Data Variations. A good way to further to analyse the performance of an algo-
rithm is to vary the sequences in a number of ways, simulating different real-world
scenarios:

• Figure 9.9 shows the tracking accuracy when rectifying the images to different
fields of view, while keeping the same resolution (640 × 480). Since the raw
data has a resolution of 1280× 1024, the caused distortion is negligible.

• Figure 9.10 shows the tracking accuracy when rectifying the images to different
resolutions, while keeping the same field of view.

• Figure 9.11 shows the tracking accuracy when playing sequences only forwards
compared to the results obtained when playing them only backwards – switch-
ing between predominantly forward-motion and predominantly backward-
motion.

In each of the three figures, the bold lines correspond to the default parameter
settings, which are the same across all evaluations.

Ground Truth Validation. Since for most sequences, the used loop-closure
ground truth is computed with a SLAM-algorithm (LSD-SLAM) itself, it is not
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Figure 9.11: Dataset motion bias. Alignment error when running all sequences for-
wards and backwards, as well as the combination of both (default): While DSO is largely
unaffected by this, ORB-SLAM performs significantly better for backwards-motion. This
is a classical example of “dataset bias”, and shows the importance of evaluating on large
datasets, covering a diverse range of environments and motion patterns.
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Figure 9.12: Start- and end-segment error. RMSE for alignment with the provided
start- and end-segment ground truth. Note that it is roughly 100 times lower than ealign,
and very similar for both evaluated methods. It can also be observed, that the automatic
initialization of DSO fails occasionally (in that case all errors, including the start-segment
error, are set to infinity), while this is not the case for ORB-SLAM. If the algorithm fails
to provide an estimate for the full trajectory, the end-segment error is set to infinity.
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perfectly accurate. We can however validate it by looking at the RMSE when align-
ing the start- and end-segment, i.e., the minima of (9.12) and (9.13) respectively.
They are summarized in Figure 9.12. Note the difference in order of magnitude:
The RMSE within start- and end-segment is roughly 100 times smaller than the
alignment RMSE, and very similar for both evaluated methods. This is a strong
indicator that almost all of the alignment error originates from accumulated drift,
and not from noise in the ground truth.

9.4.1 Dataset

The full dataset, as well as preview-videos for all sequences are available on

http://vision.in.tum.de/mono-dataset

We provide

• Raw camera images of all 50 sequences (43GB; 190’000 frames in total), with
frame-wise exposure times and computed ground truth alignment of start- and
end-segment.

• Geometric (FOV distortion model) and photometric calibrations (vignetting
and response function).

• Calibration datasets (13GB) containing (1) checkerboard-images for geomet-
ric calibration, (2) several sequences suitable for the proposed vignette and
response function calibration, (3) images of a uniformly lit white paper.

• Minimal c++ code for reading, pinhole-rectifying, and photometrically undis-
torting the images, as well as for performing photometric calibration as pro-
posed in Section 9.2.3.

• Matlab scripts to compute the proposed error metrics, as well as the raw
tracking data for all runs used to create the plots and figures in Section 9.4.

9.4.2 Known Issues

• Even though we use industry-grade cameras, the SDK provided by the manu-
facturer only allows to asynchronously query the current exposure time. Thus,
in some rare cases, the logged exposure time may be shifted by one frame.
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Chapter 10
Contribution

We have developed direct approaches for one of the most fundamental tasks in com-
puter vision, estimating 3D geometry and camera motion from 2D images. While
direct formulations have a long history in the literature – first direct methods even
pre-dating the advent of keypoint descriptors and detectors – the state of the art
in real-time localization and mapping (SLAM) and visual odometry (VO) predom-
inantly operates on small sets of extracted keypoint matches.

10.1 Thesis Summary

In the following, we give a concise summary of the main contribution of each pub-
lication included in this thesis.

Chapter 3: Semi-Dense Visual Odometry for a Monocular Camera. We
proposed a frame-to-frame, real-time direct visual odometry approach. It introduced
the concept of incrementally estimating semi-dense depth maps in a probabilistic
framework, using pixel-wise filtering over many small-baseline photometric stereo
comparisons. Furthermore, we introduced the concept of geometric vs. photomet-
ric noise in the input images, and derive a model of how they affect photometric,
stereo-based depth estimation accuracy. The distinction between photometric and
geometric noise is picked up again in Chapter 8, where we analyzed the different
effects of these two types of noise on the direct and the indirect model.

Chapter 4: LSD-SLAM: Large-Scale Direct Monocular SLAM. We ex-
tend the previously presented semi-dense odometry formulation to a full SLAM sys-
tem, including loop-closure detection and global map optimization. To this end, we
introduced keyframes – semi-dense depth maps with associated Gaussian depth un-
certainties – and keyframe-to-keyframe alignment on Sim(3), explicitly estimating
accumulated scale-drift. This allows efficient global map optimization and loop-
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closure correction in a pose-graph framework. The inclusion of scale in the opti-
mization is required due to the separation between pose- and geometry estimation,
fixing the estimated local geometry (and thus the scale of a keyframe) to a – es-
timated, hence potentially erroneous – scale. The resulting real-time monocular
SLAM system creates high-fidelity semi-dense maps of the environment in real-time
on a CPU, and has been published as open-source code.

Chapter 5: Semi-Dense Visual Odometry for AR on a Smartphone. We
developed an Android implementation of the previously presented direct semi-dense
odometry approach, demonstrating that the computational demands of direct for-
mulations are not necessarily higher than those of comparable indirect methods.
Furthermore, we showed integration into an augmented reality framework, includ-
ing basic physical interaction with the environment (driving a car on a flat surface).

Chapter 6: Large-Scale Direct SLAM with Stereo Cameras. We proposed
a generalization of LSD-SLAM to stereo cameras. It combines information from
temporal stereo (disparity information from images taken by the same camera at
different points in time) and static stereo (disparity information from images taken
by different cameras, at the same point in time). In addition, invariance to auto-
matic exposure changes is added by including an affine intensity transfer function
between frames. The resulting SLAM system achieves state-of-the-art accuracy and
runtime on challenging benchmarks such as KITTI and the EuRoC MAV sequences,
while at the same time reconstructing high-fidelity semi-dense maps of the environ-
ment. Furthermore, we analyzed the evolution of runtime and tracking accuracy
with changing image resolution – exploiting the sub-pixel accurate nature of direct
methods. This demonstrates the ability to generalize to very low image resolu-
tions, while still achieving competitive tracking accuracy, while using only minimal
computational resources.

Chapter 7: Large-Scale Direct SLAM for Omnidirectional Cameras. We
showed a generalization of LSD-SLAM to cameras with a field of view above 180◦. In
particular, we generalized direct image alignment and incremental depth estimation
to two camera models which allow to represent a field of view above 180◦, the
unified omnidirectional model as well as a cube-shaped piecewise pinhole model.
Furthermore, we transitioned from representing inverse depth to inverse distance,
avoiding the singularity at z = 0.

Chapter 8: Direct Sparse Odometry. With DSO, we introduced an alterna-
tive, sparse and direct direct visual odometry formulation. It retains the geometry
representation (inverse depth) and the direct energy formulation from LSD-SLAM.
In contrast to LSD-SLAM however, geometry and camera poses are optimized in a
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joint Gauss-Newton framework, preserving statistical consistency and avoiding pre-
mature convergence as well as the accumulation of linearization errors. To facilitate
this in real-time, we drop the smoothness prior employed by LSD-SLAM, switching
to a sparse geometry representation – nonetheless, our approach retrains the ability
to sample from across all information including edges, instead of only using corners.
Furthermore, we include the camera intrinsics in the optimization, and add complete
photometric calibration to the model – including exposure time, non-linear pixel re-
sponse and lens vignetting. We analyze the effect of a number of fundamental design
and parameter choices using a large dataset of real-world sequences.

Chapter 9: A Photometrically Calibrated Benchmark For Monocular Vi-
sual Odometry. This publication is closely related to DSO, and describes the
dataset on which many of the parameter- and tracking accuracy evaluations for DSO
are performed. It extends on existing datasets in a number of ways: First, it con-
tains a complete photometric calibration, including frame-wise exposure times, the
calibrated pixel response function and lens vignetting factors, for which we present
novel calibration approaches which require minimal set-up. Second, it surpasses
existing public datasets in scale and variety, containing 50 sequences recorded in
indoor and outdoor environments, featuring different motion patterns, two different
lenses, a variety of frame-rates, and different sensor settings. In total, the dataset
contains 105 minutes of video (190’000 frames). To facilitate the scale of the bench-
mark, we propose a novel tracking accuracy evaluation metric – the alignment error.
It is based on the accumulated drift after a large loop – equally weighting scale-,
rotation- and translation drift based on their influence on position estimation error
– thereby not requiring ground-truth poses for every frame in the sequence.

10.2 Gained Experimental Insights

Using the TUM monoVO dataset and evaluation methodology presented in the
last chapter, we performed extensive parameter studies, thoroughly evaluating the
effect of algorithm and system design choices. In addition, we analyzed the effect
of different types of noise in the images on the direct and the indirect formulation.
In total, the parameter and accuracy evaluations from Chapter 8 and 9 summarize
40’000 tracked sequences (100 million tracked frames, or 38 days of video at 30fps),
computed on a cluster of 20 workstations. Our findings include:

• Field of view: A large field of view (at fixed video resolution) increases
tracking accuracy and robustness for both direct and indirect methods, even
though this implies decreased angular image resolution.

• Video resolution: The video resolution (at fixed field of view) has a signif-
icantly larger effect on indirect approaches than on direct approaches. This
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is consistent with the results from Chapter 6, showing that direct approaches
are better at extracting information from low-resolution images, which may
only contain few detectable keypoints. It also supports the observation that
the accuracy of DSO is not limited by the amount of available data, but rather
by the limited expressive complexity of the underlying predictive model. In
turn, indirect approaches require high image resolution and more feature-rich
environments to reach this threshold, and are in fact limited by the amount
of (usable) data in practice.

• Dataset bias: We demonstrate the importance of evaluating on large, di-
verse datasets, by analyzing the tracking accuracy when running the same
sequences forwards and backwards. While DSO’s tracking accuracy is the
same in both cases, the accumulated drift of ORB-SLAM is roughly twice as
large for forward-motion as for backward-motion.

• Image data redundancy: We show that in practice, image data is locally
highly redundant, and that there is little to no benefit of using more than a
certain number of data points (800 per keyframe in our experiments) in terms
of tracking accuracy. This is likely due to other error sources (i.e., systematic
biases arising from various model violations, such as reflections, geometric
aliasing, occlusions, or deviations of the real-world lens projection from the
used parametric, central approximation) becoming the dominant error source.
Note that we have only analyzed this in terms of long-term pose estimation
accuracy – where, even with heavily sub-sampled data and after eliminating /
marginalizing 3D geometry parameters, there are several orders of magnitude
more constraints than degrees of freedom. The amount of data required to
reconstruct accurate and complete 3D models is much larger, rendering the
direct approaches ability to extract more information from available image
data more valuable.

• Additional value of non-corners: While adding more data does not neces-
sarily increase accuracy and robustness, the ability of direct methods to sample
data points from across all available information – including edges and weakly
textured surfaces – does increase tracking accuracy and robustness.

• Impact of prematurely fixing linearizations: Our experiments indicate
that – in the DSO implementation – taking keyframes more frequently de-
creases tracking accuracy. This is due to the fixed windows size: taking more
keyframes causes each keyframe to be marginalized earlier – thereby fixing
linearizations more early on, and around a linearization point further away
from the correct estimate. Since LSD-SLAM fixes linearizations immediately
(at the very first evaluation point for depth estimation), DSO’s ability to re-
linearise as better state estimates become available is likely to be one of the
major sources of increased tracking accuracy compared to LSD-SLAM.
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• Photometric vs. geometric noise: We show that the indirect formulation
is much more robust to geometric noise in the data, for example caused by a
rolling shutter or inaccurate intrinsic calibrations. In turn, the direct formula-
tion is significantly more accurate and robust on geometrically well-calibrated
data, and more robust to photometric noise (such as motion blur).
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Chapter 11
Limitations and Future Research

All methods and models developed in this thesis are entirely based on a direct model
formulation and do not rely on corner detectors or keypoint descriptors. While our
evaluations on extensive datasets have shown the benefits of a direct formulation in
terms of tracking accuracy and robustness, we have also discussed the shortcomings
of a direct approach. In this chapter we first discuss the limitations of a direct
structure and motion formulation, and subsequently provide a summary of promising
future research directions.

11.1 Limitations

First, the most fundamental limitation of direct methods lies in the high degree
of non-linearity of the photometric error terms, causing the least-square energy
function to be strongly non-convex. This limits direct approaches to incremental
tracking, as they require accurate initializations for all involved parameters.
In fact, DSO spends half of the compute budget – and more than half of the
implementation’s lines of code – solely on providing initializations for the back-end
minimization, and failure to provide these is the main sources of tracking failure.
For camera pose parameters, the need for initializations can be removed by tightly
integrating an IMU as done in [12]. Geometry parameters on the other are initialized
using a discrete search along the epipolar line both in LSD-SLAM as well as DSO,
which only works well for small inter-frame motion. This currently restricts direct
formulations to video processing, rather than 3D reconstruction from unordered sets
of photographs. Furthermore, keypoints enable efficient approaches for loop-closure
detection and relocalization that scale logarithmically with the map size – while
the direct loop-closure detection approach implemented in this thesis (as, e.g.,
described in Chapter 6) relies on (guided) sampling, which has linear worst-case
complexity, and thus will not scale well to arbitrarily large scenes.

Second, we have shown that the performance of the direct model quickly
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deteriorates in the presence of geometric noise. This is because (1) geometric noise
is not modeled, and (2) in the presence of geometric noise larger than 2 pixels,
there likely exists no solution / initialization for which all residuals are within the
validity range of the image linearization, thus optimization is likely to fail entirely
– in this case, reverting to a coarser image resolution will give better results. In
practice, this means that direct approaches require a more accurate (geometric)
sensor model than indirect formulations, and cannot afford to ignore rolling shutter
or radial lens distortions.

Third, the inclusion of zeroth-order information (absolute intensity) makes the
direct approach susceptible to illumination changes. While we have shown that
auto-exposure and global, affine illumination changes can be compensated for by
including them in the model, local, non-affine changes (e.g., caused by moving light
sources) severely impact the performance of the direct formulation. This can be
alleviated by switching to a first-order or second-order error formulation, i.e., for-
mulating residual terms on first or second order image derivatives. Even invariance
to arbitrary monotonic brightness changes – as offered by modern binary keypoint
descriptors like ORB – can be achieved by formulating error residuals on the local
image gradient direction.

11.2 Future Research

There is a number of interesting future research directions, which we sketch out in
the following. We start with clearly defined and immediate extensions, and lead up
to more long-term research goals.

Practical extensions to DSO. We have shown for LSD-SLAM how to (1) formu-
late it for omnidirectional cameras, (2) extend it to stereo- or multi-camera set-ups,
and (3) tightly integrate an IMU. For DSO however – which offers significantly better
tracking accuracy due to the joint, consistent optimization – these extensions remain
open challenges, and are likely to significantly enhance the methods performance for
practical application.

Furthermore, DSO can be extended to a full SLAM system by replacing the
currently marginalization-based back-end with more flexible alternatives such as a
double-window formulation. In fact, since all geometry parameters are represented
in camera coordinate frames (and thus residuals only depend on pose transforma-
tions between frames, and not on absolute poses), geometry parameters can be
marginalized / conditioned on in a strictly relative formulation. This potentially
allows to perform efficient global map optimization on a pose-graph-like representa-
tion, without the need to re-evaluate the photometric residuals in each iteration.
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Non-parametric geometric camera calibration. One of the most interesting
insights from the experiments conducted in the last two chapters is, that the tracking
error accumulated by DSO cannot be further decreased by (1) using more data (more
points / frames), or (2) using more accurate data (higher resolution images). In fact,
this indicates that the accumulated drift is not due to sensor noise – instead, it likely
is caused by (1) outliers the front-end fails to recognize as such (reflections, occlusions
/ perceptual aliasing, slowly moving objects such as clouds), or (2) systematic biases
induced by implicit model assumptions. One particularly influential assumption is
the camera projection model, or rather its parametric approximation: In addition to
the zero-aperture approximation employed by all central camera models, structure
and motion methods generally approximate the true projection function – mapping
3D points to 2D pixel coordinates – with a parametric expression; some examples
were given in Chapter 2.1.1. This can be avoided by calibrating a non-parametric
projection model, modelling the ray direction for each pixel independently, while
using a parametric base-model as probabilistic prior, rather than as hard constraint.

Alternative error formulations. As mentioned in the previous section, one of
the major drawbacks of the error formulation employed throughout this thesis is
the incorporation of all zeroth-order information (absolute intensity), limiting the
approach to scenes with constant illumination. This can be avoided – while staying
in a direct framework – by employing error formulations defined on first- or second-
order image derivatives, adding invariance to additive or affine illumination changes
respectively. Invariance to arbitrary monotonic brightness changes can be obtained
by defining an error metric on the local image gradient direction. It is important
to note, that zeroth- and first-order information can provide valuable information
that cannot be recovered otherwise, in particular on photometrically well-calibrated
data. Examples include smooth intensity variations across mostly white walls.

Interesting research directions arise from combining multiple error metrics, for in-
stance using zeroth-order residuals for a real-time visual-odometry front-end (where
constant scene lighting is a reasonable assumption), while using higher-order resid-
uals for loop-closures and to align images taken at very different points in time
(where the scene lighting conditions may have changed significantly). Similarly, the
best error metric can be chosen on a per-residual basis, attempting to maximize the
retained information while gaining invariance to distortions present in the particular
observation.

Densification and integration of semantic / learnt priors. The perhaps
most exciting direction that will be taken in the future is the incorporation of learnt
prior knowledge to regularize weakly observable, and to complete unobservable in-
formation, thereby paving the way to high-fidelity dense reconstruction from passive
vision. We believe the acquisition and formulation of realistic, real-world priors on
the 3D shape and appearance of the world we live in (replacing a basic smoothness
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assumption) to be an essential requirement for this path.
A promising approach is to formulate this as hierarchical replacement scheme –

incrementally marginalizing reoccurring geometric structures into a “vocabulary” of
shapes learnt from real-world 3D scenes, starting at the level of simple geometric
primitives such as planes, cylinders or rectangular corners, and leading all the way
up to chairs, tables, cars or entire buildings. Such approaches will allow to complete
unobservable information, while at the same time reducing the model’s degrees of
freedom (and thereby both required compute as well as memory), enabling truly
large-scale, dense, and potentially non-rigid 3D reconstruction.
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Appendix A

Multimedia Material

Semi-Dense Visual Odometry for a Monocular Camera

https://youtu.be/LZChzEcLNzI

https://youtu.be/LZChzEcLNzI


LSD-SLAM: Large-Scale Direct Monocular SLAM

https://youtu.be/GnuQzP3gty4

Semi-Dense Visual Odometry for AR on a Smartphone

https://youtu.be/X0hx2vxxTMg
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Large-Scale Direct SLAM with Stereo Cameras

https://youtu.be/oJt3Ln8H03s

Large-Scale Direct SLAM for Omnidirectional Cameras

https://youtu.be/v0NqMm7Q6S8
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DSO: Direct Sparse Odometry

https://youtu.be/C6-xwSOOdqQ
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Appendix B

Open-Source Code and Datasets

LSD-SLAM: Large-Scale Direct Monocular SLAM

• https://github.com/tum-vision/lsd_slam: C++ implementation of
LSD-SLAM (see Chapter 4).

• https://vision.in.tum.de/lsdslam: Four sequences used for the
qualitative evaluation of LSD-SLAM (see Chapter 4).

Large-Scale Direct SLAM for Omnidirectional Cameras

• https://vision.in.tum.de/omni-lsdslam: Five sequences used for the
quantitative evaluation of omnidirectional LSD-SLAM, with associated
ground truth poses (see Chapter 7).

DSO: Direct Sparse Odometry

• http://vision.in.tum.de/dso: C++ implementation of DSO (see Chapter
8). To appear.

TUM monoVO Dataset

• https://github.com/tum-vision/mono_dataset_code: C++ / Matlab
implementation for photometric camera calibration, and TUM monoVO
dataset evaluation (see Chapter 9)

• https://vision.in.tum.de/mono-dataset: The full TUM monoVO
dataset (see Chapter 9).

https://github.com/tum-vision/lsd_slam
https://vision.in.tum.de/lsdslam
https://vision.in.tum.de/omni-lsdslam
http://vision.in.tum.de/dso
https://github.com/tum-vision/mono_dataset_code
https://vision.in.tum.de/mono-dataset
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