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Abstract— We propose a real-time, direct monocular SLAM
method for omnidirectional or wide field-of-view fisheye cam-
eras. Both tracking (direct image alignment) and mapping
(pixel-wise distance filtering) are directly formulated for the
unified omnidirectional model, which can model central imaging
devices with a field of view well above 150◦. This is in stark
contrast to existing direct mono-SLAM approaches like DTAM
or LSD-SLAM, which operate on rectified images, limiting
the field of view to well below 180◦. Not only does this
allow to observe – and reconstruct – a larger portion of the
surrounding environment, but it also makes the system more
robust to degenerate (rotation-only) movement. The two main
contribution are (1) the formulation of direct image alignment
for the unified omnidirectional model, and (2) a fast yet accurate
approach to incremental stereo directly on distorted images. We
evaluated our framework on real-world sequences taken with a
185◦ fish-eye lens, and compare it to a rectified and a piecewise
rectified approach.

I. INTRODUCTION
Visual Odometry (VO) and Simultaneous Localization and

Mapping (SLAM) are becoming increasingly important for
robotics and mobile vision applications, as they only require
optical cameras – which are cheap, light and versatile, and
hence can easily be put into commodity hardware. A lot of
research has been focussed around these topics throughout
the last decade, with an particular focus on real-time systems
– which for example can be used for autonomous control for
example of UAVs [1], [2].

Most existing approaches are based on keypoints: Once
keypoints are extracted, the images are abstracted to a
collection of point-observations which are then used to
compute geometrical information. This can be done in a
filtering framework [3][4][5], or in a keyframe-based non-
linear optimization framework [6], [7], [8]. This arguably
has the advantage that a large part of the required work-
load only is done once on keypoint extraction, such that
remaining computational resources can be spent on enforcing
large-scale geometric consistency (Bundle Adjustment), and
outliers can be removed in a straight-forward way.

More recently, so-called direct approaches have gained
in popularity: instead of abstracting the images to point-
observations, they compute dense [9], or semi-dense [10]
depth maps in an incremental fashion, and track the camera
using direct image alignment. This has the advantage that
much more information can be used, in particular informa-
tion contained edges or densely textured surfaces. Further,
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Fig. 1. Top: 3D reconstruction obtained in real-time with our approach,
using a 185◦ fisheye lens. Bottom: Map of the trajectory and set of example
keyframes, with associated color-coded inverse distance maps.

the generated map contains substantially more information
about the environment, which can be used for obstacle-
avoidance and path-planning.

What all these visual methods have in common, is that they
rely on a sufficiently informative observed environment. In
many practical cases however, this can be a very restrictive
assumption: For example indoors where there are many
untextured white walls, or in the presence of moving objects,
large parts of the camera image can become uninformative
for SLAM. This is especially true if the used camera only
has a small field of view (FoV). On the other hand, the wider
the field of view, the more likely that some part of the visible
scene is well-suited for SLAM.

Nevertheless, most visual SLAM or VO systems are
restrained to using a classical pinhole camera model. Often,



this is combined with a radial distortion model (such as the
ATAN model used in PTAM). All these models can not
directly be used for omnidirectional camera (with FoV of
more than 180◦). This is especially true for direct methods,
which typically operate on rectified images – limiting the
field of view to no more than 130◦.

In this paper, we propose an extension of LSD-SLAM [10]
to a generic omnidirectional camera model. The resulting
method is capable of handling all types of central projection
systems such as fish-eye and catadioptric cameras. We eval-
uate it on images captured with a fish-eye lens covering a
FoV of 185◦. We show that especially for trajectories which
contain aggressive camera rotations, it outperforms in the
previously presented algorithms, without losing its real-time
capability.

A. Related Work

There is a range of related work regarding omnidirectional
vision, in particular for robot and ground-vehicle localiza-
tion. For instance [11] uses a catadioptric system to estimates
the ego-motion of a vehicle, using direct photometric error
minimization for rotation estimation – it is however restricted
to planar motion. In [12], ransac point association for SIFT
features is used for estimating translation and rotation, on
a rig of 5 rectified cameras. Again, the system is restricted
to planar motion. In [13] a multicamera rig is used to build
a topological map based on appearance. In [14] an EKF-
based SLAM system is adapted for omnidirectional cameras;
In [15], the advantage of using omnidirectional cameras in
this context is shown. The work of Meilland et. al. [16] is
somewhat closer to ours, as it performs dense registration
against multiple frames from a database of spherical images.
They are augmented with distance information from an
external sensor or stereo-vision. However the system is based
on a priori learned database of georeferenced images and
does not perform online SLAM.

B. Contribution and Outline

In this paper we explore the use of omnidirectional and
fish-eye cameras for direct, large-scale visual SLAM. We
propose two different camera model choices, which we
integrate into the recently appeared LSD-SLAM [10] frame-
work, and evaluate the resulting algorithm on real-world and
simulated data. More precisely, the main contribution of this
paper is two-fold: (1) We give a direct image alignment
formulation operating on an omnidirectional camera model.
(2) We derive an efficient and accurate approach to perform
stereo directly on omnidirectional images, both for the piece-
wise rectification approach as well as natively on the Unified
Omnidirectional Model. We intend to make the used datasets
including ground-truth publicly available.

The paper is organized as follows: In Chapter II, we
introduce a camera model as general projection function, and
describe the three parametrized models considered in this
paper: The Pinhole Model in Sec. II-A, an Array of Pinhole
Models in Sec. II-B, and the Unified Omnidirectional Model
in Sec. II-C. In Chapter III, we describe our omnidirectional

Fig. 2. Camera Models : The same image, warped to fit the three projection
models considered in this paper. While the Unified model and the piecewise
rectified model can cover the full 185◦ field-of-view, the pinhole model
shows significant distortion – when cropping the image to a field-of view
of only 120◦ TODO diagonal or in x-direction?, as done for this figure.

direct SLAM method. We start by reviewing the LSD-SLAM
pipe-line as introduced in [10]. We then detail how the two
major steps that depend on the camera model – probabilistic,
semi-dense depth estimation and direct image alignment –
are adapted to operate in real-time on images from omni-
directional cameras. In Chapter IV, we evaluate the accuracy,
robustness and runtime for the three different models on a
both simulated and real-world data. Finally, in Chapter V,
we summarize the results and line out future work.

II. CAMERA MODELS

In this chapter, we will lay out the three different
parametric projection functions π considered in the paper:
In Sec. II-A, we briefly review the well-known Pinhole
Model and discuss its limitations. We then extend it to a
more general Array of Pinhole Models allowing to cover the
full viewing sphere in Sec. II-B. In Sec. II-C, we introduce
the Unified Omnidirectional Model, which allows to model
360◦-vision in closed-form.

Notation. We use bold, capital letters R to denote
matrices, and bold, lower-case letters x for vectors.
u = [u, v]T ∈ Ω ⊂ R2 will generally denote pixel
coordinates, where Ω denotes the image domain.
x = [x, y, z]T ∈ R3 will be used for 3D point coordinates
and x̃ := [xT , 1]T for the corresponding homogeneous
point. [·]i denotes the i’th row of a matrix / vector.

In the most general case, a camera model is a function
π : R3 → Ω, which defines the mapping between 3D points
x in the camera frame, and pixels u in the image. For lenses
with negligible diameter, a common assumption is the single
viewpoint assumption, i.e., that all light-rays pass through a
single point in space – the origin of the camera frame C.
Hence the projected position of the point only depends on
the direction of x. We will use π−1 : Ω × R+ → R3 for
the function mapping pixels back to 3D, using their inverse
distance d. Further, we define a directed orthonormal camera
frame centred at C by fixing a privileged direction z (the
principal axis) and two other orthogonal directions.

Note that the single viewpoint assumption allows trans-
forming images from any camera model to any other, for
the domain of visible points they have in common – this
is generally referred to as image rectification, and is a
frequently done pre-processing step, transforming the image



Fig. 3. Pinhole Model. A 3D point is directly projected onto the image
plane through C.

to follow a more simple model e.g. by removing radial
distortion. Given two projection functions π1, π2 and an
image I1 : Ω1 → R taken with a camera π1, we can compute
the respective image I2 : Ω2 → R following projection π2 as

I2(u, v) = I1(π1(π−12 (u, v))) (1)

This warping however introduces interpolation artefacts and
can degrade the image quality, especially in areas where the
angular resolution changes significantly.

A. Pinhole Model

The pinhole camera model is the most used camera model.
The image is obtained by projecting each point onto a plane
located at z = 1, followed by an affine mapping

πp(x) :=

[
fx 0
0 fy

] [
x/z
y/z

]
+

[
cx
cy

]
, (2)

where fx, fy are the focal lengths, and cx, cy is the principal
point. It is schematically shown in Fig. 3.

This model is often used as the linearity of the projection
function (in homogeneous coordinates) – and the fact that
straight lines in 3D are projected to straight lines in the image
– make it the most simple model choice to use. It however
has the major drawback that it cannot model a wide field of
view: The angular resolution decreases drastically towards
the borders of the image, leading to a distorted image – an
example is shown on the right in Fig. 8.

In order to make this model compatible to small radial
distortions, a non-linear radial distortion function – often
approximated polynomially – can be applied to the projected
pixel coordinates. Still, the nature of a pinhole projection
forbids points to lie behind the image plane, limiting the
field of view to below 180◦.

B. Array of Pinhole Camera

A straight-forward approach to extending the field of view
is to use a camera model consisting of an array of several
pinhole cameras, which have the same principal point but dif-
ferent orientations. The projection function πmp(x) : R3 →
∪iΩi is then given by piecewise rotation followed by pinhole
projection, i.e.,

πmp(x) := πpi(x)
(Ri(x)x) (3)

where i(x) : R3 → [1, k] segments the 3D space into k
subspaces. While in general the segmentation and orientation
of the associated cameras can be chosen arbitrarily, we
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Fig. 4. Piecewise Pinhole Model. A 3D point is projected through the
center of the camera on one of the image planes depending depending on
the subspace it lies in, effectively forming a cube-shaped image plane. X1

and X2 are projected to different images Ω1 and Ω2.

choose to split R3 into six equally sized quadrants, forming
a cube-shaped image plane. This has the advantage that i(x)
can be computed from binary comparisons on x, y and z,
while the Ri correspond to orthogonal rotations.

While this model has a number of desirable properties –
it is piecewise linear in homogeneous coordinates, simple
to compute and offers reasonably homogeneous angular
resolution – it does not fit natural lenses. In order to use
it, incoming images have to be rectified in a preprocessing
step. Further, the piecewise nature of the model causes
discontinuities in the image space Ω = ∪iΩi, complicating
its use in practice.

C. Central Omnidirectionnal Camera: Unified Model

A number of different projection functions has been pro-
posed in the literature for modelling and calibrating cata-
dioptric and diotpric omnidirectionnal cameras. Desirable
properties of such a function include (1) its capability to
accurately describe a wide range of actual physical imaging
devices, (2) the ease of parameter calibration and (3) the
existence of a closed-form expression for the unprojection
function π−1. As this paper targets real-time direct SLAM,
an additional criterion is the computational cost of projecting
and unprojecting points, as well as the cost of evaluating the
corresponding derivatives.

Accurate results were obtained by moving all non-
linearities into a radially symmetric function, and identifying
the first coefficients of its Taylor expansion [17]. While
this approach can model every camera that fits the single
viewpoint assumption, it lacks a closed-form unprojection
function – and approximating it is computationally costly.

Instead, we use the model originally proposed in [18] for
central catadioptric systems and extended in [19], [20] for a
wider range of physical devices including fish-eye camera.
The central idea behind this model is to concatenate two
successive projections: The first one projects the point from
the world onto a camera-centered unit sphere. The second
one is an ordinary pinhole projection trough a center shifted
along the z axis by −ξ. The model is described by a total
of five parameters, fx, fy , cx, cy and ξ. The projection of a
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Fig. 5. Unified Model. A 3D point is first projected on the unit sphere,
and then the image plane via a secondary, shifted camera center Cs.

point is computed as

πu(x) =


fx

x

z + ‖x‖ξ

fy
y

z + ‖x‖ξ

+

[
cx
cy

]
, (4)

where ‖x‖ is the euclidean norm of x. The corresponding
unprojection function can be computed in closed form, and
is given by

πu
−1(u, d)=

1

d

ξ+
√

1+(1−ξ2) (ũ2+ṽ2)

ũ2+ṽ2+1

ũṽ
1

−
00
ξ

 ,

(5)

where [
ũ
ṽ

]
=

[
(u− cx)/fx
(v − cy)/fy

]
. (6)

The major advantage of this model is the availability of an
easy-to-compute projection and unprojection function. Note
that for ξ = 0 it reduces to the pinhole model. In order
to improve the generality of the model, we we combine
it with a small radial-tangential distortion to correct lens
imperfections – similar to the pinhole case, images are
warped once in the beginning, to perfectly fit this model.

III. DIRECT OMNIDIRECTIONAL SLAM

In this Chapter, we describe our omnidirectional, large-
scale direct SLAM system, which is based on LSD-SLAM
[10]. First, in Sec. III-A we review the LSD-SLAM pipeline
adapted to omnidirectional cameras. We then derive a direct
image registration formulation for the unified camera model
in Sec. III-B. In Sec. III-D, we show how – in this framework
– stereo can be done efficiently on the unified (1) and
piecewise rectified (2) model.
Notation. D : Ωd → R+ will denote the inverse distance
map of the current keyframe.With a slight abuse of notation,
elements of se(3) will directly be represented as 6-vector µ,
and we use exp and log to associate an element of the lie
algebra to the corresponding element of the lie group. We
then define the composition operator ◦ as

µ1 ◦ µ2 := log (exp(µ1) · exp(µ2)) . (7)

Fig. 6. Overview over the LSD-SLAM pipeline for omnidirectional
Cameras. Tracking and depth estimation inherently depend on the camera
model used, their omnidirectional versions and are detailed in Sec. III-B
and III-D receptively.

As a shorthand, we use Rµ and tµ to denote the correspond-
ing rotation matrix and translation vector of a transformation,
and [·]i to extract the i’th row of a matrix/vector.

A. Method Overview

Our method continuously builds and maintains a pose-
graph of keyframes. Each keyframe contains a probabilis-
tic semi-dense inverse distance map, which maintains a
Gaussian probability distribution over the inverse distance
for all pixels which have sufficient intensity gradient. It is
estimated over time by filtering over a large number of small-
baseline stereo comparisons. In turn, new images – as well as
loop-closure constraints – are computed using direct image
alignment. Note that in contrast to [10], we use the inverse
distance d = ‖x‖−1 instead of depth, such that we can model
points behind the camera. An overview is shown in Fig. 6.

1) SE(3) Tracking: When a new camera frame is captured,
its rigid-body pose relative to the closest keyframe is tracked
using direct image alignment, which will be described in III-
B.

2) Probabilistic Distance Map Estimation: Keyframes are
selected at regular intervals, based on the moved distance to
the previous keyframe (relative to its mean inverse distance),
as well as the relative overlap. For each keyframe, an
inverse distance map is initialized by propagating the inverse
distance map from its immediate predecessor. Subsequently,
it is updated – and extended to new regions – by incorpo-
rating information obtained from many small-baseline stereo
comparisons. This step will be described in more detail in
Sec III-D.

3) Scale-drift aware Pose-Graph optimization on Sim(3):
In the background, we continuously perform pose graph
optimization between all keyframes, and attempt to find new
constraints between keyframes which are likely to overlap.
Constraints are expressed as similarity transforms to account
for scale-drift – more details on this part can be found in
[10].

4) Initialization of the SLAM system: The system is
initialized with a random depth map with mean one and
a large covariance – this generally converges to a good



estimate, as long as the camera motion within the first few
seconds is not too degenerate.

B. Omnidirectional Direct Image Alignment on SE(3)

Every new frame Inew is tracked relative to the closest
keyframe IKf with associated inverse distance map DKf by
direct minimization of the photometric error, defined as

Eframe(µ) :=
∑

u∈Ωd

ρ

[ rIu(µ)

σrIu(µ)

]2 , (8)

where ρ denotes the robust Huber norm, and with

rIu(µ) = IKf(u)− Inew (π(ω(µ,u))) (9)

ω(µ,u) = Rµπ
−1(u, DKf(u)) + tµ. (10)

The function ω unprojects a point, and and transforms it
by µ. As in [10], the residuals are normalized with their
propagated inverse distance variance.

This weighted least-squares problem is then minimized
in a coarse-to-fine scheme using the iteratively re-weighted
Levenberg-Marquad algorithm in a left-compositional for-
mulation: In each iteration, we solve for a left-multiplied
increment

δµ(k) =
(
JTWJ + λdiag(JTWJ)

)−1
JTWr, (11)

where r = [rIu1
. . . rIun ]T is the stacked residual vector and

W a diagonal matrix containing the weights. J is the n× 6
Jacobian of the stacked residual vector evaluated at µ(k):

J =
∂r(ε ◦ µ(k))

∂ε
(12)

which is then left-multiplied on the current estimate

µ(k+1) = δµ(k) ◦ µ(k). (13)

Using the chain rule, each 1× 6 row Ju of the Jacobian can
be decomposed into three parts

Jfwd
u = −JInew

∣∣
π
Jπ
∣∣
ω
Jω
∣∣
µ
, (14)

where
• Jω

∣∣
µ(k)

is a 3 × 6 Jacobian, denoting the left-
compositional derivative of the transformed point, eval-
uated at µ = µ(k)

Jω
∣∣
µ

=
∂ω(ε ◦ µ,u)

∂ε
. (15)

• Jπ
∣∣
ω

is the 2× 3 Jacobian of the projection function π
evaluated at ω = ω(µ(k),u).

• JInew

∣∣
π

is the 1×2 intensity gradient of the new image,
evaluated at point π = π(ω(µ(k),u)).

Notice how the evaluation point of each of these Jacobians
depends on µ(k), hence everything has to be re-evaluated
in each iteration. In practice, the computational cost is the
dominated by this evaluation – which is especially true in
our case, as for the unified model the projection, and hence
its derivative Jπ

∣∣
ω

is much more complex.
To avoid this, we use an inverse compositional formulation

– a trick that is well known in the literature [21]: In each

iteration, instead of applying the increment to the points in
the reference frame, its inverse is applied to the points in the
keyframe. That is, instead of linearising

IKf(u)− Inew(π(ω(ε ◦ µ(k),u))), (16)

with respect to ε, we linearize

IKf(π(ω(ε,u)))− Inew(π(ω(µ(k),u))). (17)

The Jacobian now becomes

Jbkwd
u = JIKf

∣∣
π
Jπ
∣∣
ω
Jω
∣∣
0
, (18)

with ω = ω(0,u) and π = π(ω(0,u)). It is thus independent
of µ(k). This allows us to pre-compute it once per pyramid
level, saving much of the required computations. Note that
we still have to re-evaluate the outer product JTWJ on
each iteration, as the weight matrix changes. The inverse of
the resulting update is then right-multiplied onto the current
estimate, i.e.,

µ(k+1) = µ(k) ◦ (−δµ(k)). (19)

C. Omnidirectional Direct Image Alignment on Sim(3)

In monocular SLAM, the absolute scale is not observable
and drifts over time – which has to be taken into account
when finding loop-closures. As in [10], we use Sim(3)
image alignment between keyframes, to estimate not only
their relative pose, but also the scale difference between
their inverse distance maps. This is done by introducing
an additional error term – the geometric error – which
penalizes differences in inverse distance. The energy function
for aligning (IK1, DK1) and (IK2, DK2) thus becomes

EKf(µ) :=
∑

u∈Ωd

ρ

[ rIu(µ)

σrIu(µ)

]2
+

[
rDu (µ)

σrDu (µ)

]2 , (20)

where µ ∈ sim(3), and

rIu(µ) = IK1(u)− IK2 (π(ωs(µ,u))) (21)

rDu (µ) = ‖ωs(µ,u)‖−1 −DK2 (π(ωs(µ.u))) . (22)

Note that we now optimize over relative scale as well, and
hence have to apply a similarity warp, defined as

ωs(µ,u) = sµRµπ
−1(u, DK2(u)) + tµ, (23)

where sµ is the scaling factor of µ. Note that in contrast
to [10], this residual now penalizes differences in inverse
distance. Again, we apply statistical normalization based on
the propagated variances as in [10]. For tracking Sim(3)-
constraints, we use a forward-compositional formulation.

We further note that as in [10], the approximated Hessian
(JTWJ)−1 of the last iteration can be interpreted as covari-
ance on a left-multiplied increment on µ, and is used in the
subsequent pose-graph optimization.



Fig. 7. Non-Rectified Stereo Matching: We efficiently browse the epipolar
curve in the image uL using a parametric equation. It is obtained by
projecting the line connecting p0 and p∞ on the unit sphere around the
camera center.

D. Semi-Dense Depth Map Estimation

Once a frame is registered to a keyframe, stereo matching
is performed to refine the keyframe distance map DKf.
As matching cost we use the sum of squared differences
(SSD) over five equidistant pixels along the epipolar line.
If a prior exists, the epipolar search is constrained to the
interval [d− 2σd, d+ 2σd]. This greatly improves efficiency
and minimizes the probability of finding an incorrect match,
as in practice only very short line segments have to be
searched. Subsequently we refine the found match to sub-
pixel precision.

Similar to [22], each new measurement is fused into the
existing depth map. Measurement variances σ2

m are obtained
using the geometric and photometric error, as derived in [22].
Finally, we smoothe the inverse distance map and remove
outliers.

1) Non-Rectified Stereo: When performing stereo on the
unified model, epipolar lines are not in fact lines but curves.
More precisely, Geyer et al. showed that these epipolar
curves are conics [18], as they are the pinhole-projection of a
geodesic on the unit sphere, as visualized in Fig. 7. We here
present a general method to incrementally and efficiently
compute points along the epipolar curve, at a constant step-
size of 1 px: While this is trivial for straight lines, it is not
straight-forward for the general case of epipolar curves.

We first define the two points p0,p∞ ∈ R3 on the unit
sphere around the projective center Cref, which correspond to
the maximum and minimum inverse distance of the search
interval dmax,dmin:

p0 := πs(Rπ
−1
u (u, dmax) + t) (24)

p∞ := πs(Rπ
−1
u (u, dmin) + t). (25)

Here, πs projects a point onto the unit sphere, π−1u is the
unprojection function of the unified model (5), and u is the
pixel in IKf we are trying to match. We then express the
straight line between these points as

pL(α) = αp0 + (1− α)p∞, (26)

for α ∈ [0, 1]. This also gives a parametric expression for

Fig. 8. Piecewise rectification: Example of fish-eye camera rectification.
The borders are still distorted, as it is clearly visible on the checker-board,
which leads to interpolation artefacts or blur.

the epipolar curve in Iref as

uL(α) := πu(pL(α)). (27)

Note that we apply the full unified projection function, which
first projects a point on pL onto the geodesic, and then into
the image. This is visualized in Fig. 7.

Starting at uL(0), we then browse the epipolar curve
by incrementing α. A step-size of 1 pixel is enforced by
using a first-order Taylor expansion of uL, and choosing the
increment in α as

δα =
∥∥JuL

∣∣
α

∥∥−1, (28)

which we re-evaluate for each increment. Note that this
method is independent of the shape of the epipolar curve,
and hence can be used for any central camera model.
Nevertheless, it is much more expensive than browsing a
straight line, as each point is projected individually. In LSD-
SLAM however, the search interval is always small, as either
a good prior is available, or the pixel has just been initialized
and hence the baseline is small.

2) Pre-Rectified Stereo: For a large disparity search range,
the above method can become very costly since it requires
re-evaluation of the projection function for each point. Thus,
the valid question arises whether piecewise rectification
of the input image as described in Sec.II-B, followed by
straight-forward line-browsing would be faster. For this we
determined suitable values for the focal lengths fx and fy of
each pinhole camera individually, minimizing the change in
angular resolution at each point in the image. An example is
shown in Fig. 8: Still, some distortion is clearly visible, note
for example how the checker-board shape is altered. Further,
we extend the rectified images by extending their visible
field by 20 pixel, which is not displayed in the figure. We
then perform line-stereo the same way as is done in [22].
In Sec. IV we will compare these two approaches regarding
accuracy and efficiency.

IV. RESULTS

In this Chapter, we evaluate our algorithm regarding
accuracy and computational requirements on both synthetic
and real data. We first describe the experimental setup in. IV-
A and IV-B. We then evaluate the accuracy and the compu-
tational requirements in Sec. IV-C and IV-D respectively.



Fig. 9. Reconstruction of T5 sequence. Top: Color-coded inverse distance
maps. Note how we can obtain geometry for the full 185◦ field of view.
Bottom: Final point-cloud. This corresponds to the right plot in Fig. 10

A. Hardware Setup

For real data experiment, we use a global shutter usb3
camera equipped with a 185 FoV fish-eye lens. The ξ
parameter for this system has been estimated to 2.06 by off-
line calibration, using the Kalibr toolbox [23]. Images are
cropped and scaled to a 480 × 480 region centered around
the principal point. We recorded a number of trajectories
with rapid, handheld motion, including quick rotation - an
overview over one of the sequences can be seen Fig. 9. We
also show two of the sequences (T2 and T5) in the attached
video. For ground truth acquisition, we use a motion capture
system which covers an area of approximately 7 × 12 m –
as some of the trajectories leave this area, we only compute
errors on the part for which ground truth data is available.
The synthetic data was generated using the ROS gazebo
simulator, modified to have as extra output the synchronised
pose, 185◦ images, and distance ground truth. The movement
is slower on this dataset and mimics that of a quadrotor.
For comparison with a pinhole model, we also synthesize a
sequence of rectified images, artificially cropping the field of
view to 100◦ horizontally and vertically. We intend to make
the dataset including ground truth publicly available.

B. Evaluated parameters

We evaluate the effect of three different parameters:
• The camera model: We use either the unified omni-

directional model (Uni, Sec. III-D.1), or a piecewise
rectified model (Multi, Sec. III-D.2). As baseline, we
use the cropped & rectified video with a pinhole model
(Pin).

• The input resolution: We use either an input resolution
of 480× 480 (Full) or 240× 240 (Half ).
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Fig. 10. Horizontal position for T2, T3 and T5. The red line shows the
result of Uni-Full-0, the green line that of Pin-Full-0, and the blue dotted
line the ground truth where available. For T2 and T3, the pinhole version is
lost for a large portion of the trajectory, as they include fast rotations which
cannot be tracked well with the cropped field of view. For T5 the trajectory
is correctly reconstructed with both camera models. But the accuracy is
significantly better for the unified model (see Tab.II; the final pointcloud is
shown in Fig. 9.

• Resolution used for tracking: We choose to stop the
coarse to fine approach in tracking either at the input
image (level 0 of the image pyramid) or at the first
octave of it (level 1), allowing to speed-up tracking
significantly, while maintaining most of the accuracy.

All the experiments were conducted on a Intel i7 CPU, on
a commercially available laptop.

C. Accuracy comparison

In order to assess the accuracy of our method, we measure
the translational root mean square error (RMSE) of the final
position of all keyframes, after 7DoF alignment with the
ground-truth. Because of the hard real-time constraint and the
high frame-rate of the camera, frames may be dropped and
different frames will be selected as keyframes – potentially
having a significant effect on the result. We therefore average
the RMSE of five runs. The results are shown in Tab. II and
some representative visual result are shown in Fig. 10; also
see the attached video.

Two things can be observed: First, results obtained with
the omnidirectional camera clearly outperform the pinhole
model. This shows that our algorithm can benefit from
additional information in the image due to an increased field
of view – the in some cases very significant difference is not
surprising, as the recorded trajectories contain large amounts
of rotation, which is very challenging for a normal camera.

The other observation is also expected: A higher resolution
gives consistently better results than a lower resolution,
although not by much. Interestingly, both half resolution om-
nidirectional methods outperform the full resolution pinhole
model, showing that, at least in challenging scenes, a larger
field of view is more important than high resolution. An
example of 3D reconstruction with half and full resolution
is given for the synthetic scene in Fig. 11.

D. Timing measurement

Table I shows the measured average time taken by track-
ing and mapping. These times are measured on the same
dataset as used for the accuracy assessment, and are in
millisecond. These results shows that our distorted stereo
matching algorithm is slightly more efficient than the multi
rectified version. Thisis due to the rectification required



TABLE I
MEAN TIMING RESULTS (MS)

480×480 240×240 160×160

Mul Uni Pin Mul Uni Pin Mul Uni Pin

Mapping 31 28 20 11 8 7 - - -
Tracking 24 24 17 10 10 6 3 3 2.2

Fig. 11. Reconstruction evaluation. Final pointcloud obtained on S1
trajectory for two different resolutions (left 480 × 480, right 240 × 240):
The resolution has a very sensitive impact on the completeness and accuracy
of the 3D reconstruction.

beforehand, and the fact that almost always, the browsed
epipolar segments do not exceed a couple of pixels in length.
Real time is easily achieved since each frame can be tracked
at least 40 Hz, and mapped at more than 30 Hz for a 480×480
image.

V. CONCLUSION

We proposed in this paper a direct, semi-dense monoc-
ular SLAM system for omnidirectional cameras. Based on
two different omnidirectional camera models, our system
allows to directly use a wide range of classical dioptric or
catadioptric imaging systems. The contribution of this paper
is two-fold: (1) we explicitly formulate a camera model
independent registration algorithm and (2) derived a generic,
accurate, and efficient way to perform stereo, based on a
parametric equation of the epipolar curves. We integrated
these ideas into the LSD-SLAM framework and ran the
algorithm in real-time on a number of videos captured by a
185◦ fish-eye camera. We measure both an improvement of
the accuracy of the localization and of its robustness to strong

TABLE II
ABSOLUTE RMSE IN METERS

T1 T2 T3 T4 T5 S1 S2
Mul-Full-0 0.0493 0.0656 0.0456 0.0424 0.0535 0.0208 0.0484
Mul-Full-1 0.0491 0.0699 0.0475 0.0479 0.0600 0.0387 0.0895
Mul-Half-0 0.0765 0.0966 0.0554 0.0546 0.0849 0.0209 0.0433
Mul-Half-1 0.0756 0.0977 0.0650 0.0952 0.1211 0.0345 0.1144

Uni-Full-0 0.0531 0.0506 0.0463 0.0454 0.0358 0.0340 0.0492
Uni-Full-1 0.0508 0.0634 0.0497 0.0514 0.0544 0.0429 0.0728
Uni-Half-0 0.0845 0.0731 0.0569 0.0588 0.0684 0.0382 0.0602
Uni-Half-1 0.1856 0.0837 0.0598 0.0730 0.1236 0.0428 0.0709

Pin-Full-0 0.5784 0.2282 0.0832 0.6049 0.5498 0.0474 0.7016
Pin-Full-1 0.6445 0.1526 0.0724 1.9756 0.9423 0.0861 0.6749
Pin-Half-0 1.1729 0.7301 0.6022 0.0863 1.1555 0.1297 1.5106
Pin-Half-1 1.5125 0.8351 0.6005 0.0941 2.3820 0.1685 1.1376

rotational movement compared to a standard camera. We also
observe that even at relatively low resolutions (240×240), the
localization accuracy surpasses the accuracy obtained when
using a pinhole model, with a cropped field of view.
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