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Abstract— We present an approach that enables a low-cost
quadrocopter to accurately fly various figures using vision
as main sensor modality. Our approach consists of three
components: a monocular SLAM system, an extended Kalman
filter for data fusion and state estimation and a PID controller
to generate steering commands. Our system is able to navigate
in previously unknown indoor and outdoor environments at
absolute scale without requiring artificial markers or external
sensors. Next to a full description of our system, we introduce
our scripting language and present several examples of accurate
figure flying in the corresponding video submission.

I. INTRODUCTION

In recent years, research interest in autonomous micro-
aerial vehicles (MAVs) has grown rapidly. Significant
progress has been made, recent examples include aggressive
flight maneuvers [1, 2], ping-pong [3] and collaborative
construction tasks [4]. However, all of these systems require
external motion capture systems. Flying in unknown, GPS-
denied environments is still an open research problem. The
key challenges here are to localize the robot purely from its
own sensor data and to robustly navigate it even under poten-
tial sensor loss. This requires both a solution to the so-called
simultaneous localization and mapping (SLAM) problem as
well as robust state estimation and control methods. These
challenges are even more expressed on low-cost hardware
with inaccurate actuators, noisy sensors, significant delays
and limited onboard computation resources.

For solving the SLAM problem on MAVs, different types
of sensors such laser range scanners [5], monocular cameras
[6, 7], stereo cameras [8] and RGB-D sensors [9] have been
explored in the past. In our point of view, monocular cameras
provide two major advantages above other modalities: (1)
the amount of information that can be acquired is immense
compared to their low weight, power consumption, size and
cost, which are unmatched by any other type of sensor
and (2) in contrast to depth measuring devices, the range
of a monocular camera is virtually unlimited – allowing a
monocular SLAM system to operate both in small, confined
and large, open environments. The drawback however is,
that the scale of the environment cannot be determined from
monocular vision alone, such that additional sensors (such
as an IMU) are required.

The motivation behind our work is to showcase that robust,
scale-aware visual navigation is feasible and safe on low-cost
robotic hardware. As a platform, we use the Parrot AR.Drone
which is available for $300 and, with a weight of only 420 g
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Fig. 1. Our approach enables a low-cost quadrocopter to accurately follow
any given flight trajectory. We use the front-facing camera as the main
sensor for localization based on PTAM [11]. Middle: Flight figure (blue
lines) and current goal location (red cross). Bottom left: Learned 3D feature
map. Bottom right: Visual features detected and the live-stream from the
quadrocopter.

and a protective hull, safe to be used in public places. As
the onboard computational resources are utterly limited, all
computations are performed externally.

This paper is an extension of our recently published
work [10]. In this work, we additionally describe the script-
ing language that enables our quadrocopter to complete
complex flight patterns including take-off, autonomous map
initialization, and landing. This paper comes with two videos,
demonstrating the robustness of our approach, its ability to
eliminate drift effectively and to follow pre-defined, absolute
scale trajectories. They are available online at:

http://youtu.be/tZxlDly7lno
http://youtu.be/eznMokFQmpc

II. RELATED WORK

Previous work on autonomous flight with quadrocopters
can be categorized into different research areas. One part of
the community focuses on accurate quadrocopter control and
a number of impressive results have been published [12, 1,
3]. These works however rely on advanced external tracking
systems, restricting their use to a lab environment. A similar
approach is to distribute artificial markers in the environment,
simplifying pose estimation [13]. Other approaches learn a
map offline from a previously recorded, manual flight and
thereby enable a quadrocopter to again fly the same trajectory
[14]. For outdoor flights where GPS-based pose estimation
is possible, complete solutions are available as commercial
products [15].

In this work we focus on autonomous flight without previ-
ous knowledge about the environment nor GPS signals, while

http://youtu.be/tZxlDly7lno
http://youtu.be/eznMokFQmpc


using only onboard sensors. First results towards this goal
have been presented using a lightweight laser scanner [5], a
Kinect [9] or a stereo rig [8] mounted on a quadrocopter as
primary sensor. While these sensors provide absolute scale
of the environment, their drawback is a limited range and
large weight, size and power consumption when compared
to a monocular setup [16, 7].

In our work we therefore focus on a monocular camera for
pose estimation. Stabilizing controllers based on optical flow
were presented in [17], and similar methods are integrated
in commercially available hardware [18]. Such systems how-
ever are subject to drift over time, and hence not suited for
long-term navigation.

To eliminate drift, various monocular SLAM methods
have been investigated on quadrocopters, both with off-board
[16, 5] and on-board processing [7]. A particular challenge
for monocular SLAM is, that the scale of the map needs
to be estimated from additional metric sensors such as IMU
or GPS, as it cannot be recovered from vision alone. This
problem has been addressed in recent publications such as
[19, 20]. The current state of the art is to estimate the scale
using an extended Kalman filter (EKF), which contains scale
and offset in its state. In contrast to this, we propose a novel
approach which is based on direct computation: Using a
statistical formulation, we derive a closed-form, consistent
estimator for the scale of the visual map. Our method
yields accurate results both in simulation and practice, and
requires less computational resources than filtering. It can
be used with any monocular SLAM algorithm and sensors
providing metric position or velocity measurements, such
as an ultrasonic or pressure altimeter or occasional GPS
measurements.

In contrast to the systems presented in [16, 7], we deliber-
ately refrain from using expensive, customized hardware: the
only hardware required is the AR.Drone, which comes at a
costs of merely $300 – a fraction of the cost of quadrocopters
used in previous work. Released in 2010 and marketed as
high-tech toy, it has been used and discussed in several
research projects [21, 22, 23]. To our knowledge, we are the
first to present a complete implementation of autonomous,
camera-based flight in unknown, unstructured environments
using the AR.Drone.

III. HARDWARE PLATFORM

As platform we use the Parrot AR.Drone, a commercially
available quadrocopter. Compared to other modern MAV’s
such as Ascending Technology’s Pelican or Hummingbird
quadrocopters, its main advantage is the very low price, its
robustness to crashes and the fact that it can safely be used
indoor and close to people. This however comes at the price
of flexibility: Neither the hardware itself nor the software
running onboard can easily be modified, and communication
with the quadrocopter is only possible over wireless LAN.
With battery and hull, the AR.Drone measures 53cm×52cm
and weights 420 g.
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Fig. 2. Approach Outline: Our navigation system consists of three major
components: a monocular SLAM implementation for visual tracking, an
EKF for data fusion and prediction, and PID control for pose stabilization
and navigation. All computations are performed offboard, which leads to
significant, varying delays which our approach has to compensate.

A. Sensors

The AR.Drone is equipped with a 3-axis gyroscope and
accelerometer, an ultrasound altimeter and two cameras. The
first camera is aimed forward, covers a field of view of
73.5◦× 58.5◦, has a resolution of 320× 240 and a rolling
shutter with a delay of 40 ms between the first and the last
line captured. The video of the first camera is streamed to a
laptop at 18 fps, using lossy compression. The second camera
aims downward, covers a field of view of 47.5◦×36.5◦ and
has a resolution of 176×144 at 60fps. The onboard software
uses the down-looking camera to estimate the horizontal
velocity. The quadcopter sends gyroscope measurements and
the estimated horizontal velocity at 200Hz, the ultrasound
measurements at 25Hz to the laptop. The raw accelerometer
data cannot be accessed directly.

B. Control

The onboard software uses these sensors to control the roll
Φ and pitch Θ, the yaw rotational speed Ψ̇ and the vertical
velocity ż of the quadrocopter according to an external
reference value. This reference is set by sending a new
control command u = (Φ̄,Θ̄, ¯̇z, ¯̇

Ψ) ∈ [−1,1]4 every 10 ms.

IV. APPROACH

Our approach consists of three major components running
on a laptop connected to the quadrocopter via wireless LAN,
an overview is given in Fig. 2.

1) Monocular SLAM: For monocular SLAM, our solu-
tion is based on Parallel Tracking and Mapping (PTAM) [11].
After map initialization, we rotate the visual map such that
the xy-plane corresponds to the horizontal plane according
to the accelerometer data, and scale it such that the average
keypoint depth is 1. Throughout tracking, the scale of the
map λ ∈ R is estimated using a novel method described in
Section IV-A. Furthermore, we use the pose estimates from
the EKF to identify and reject falsely tracked frames.
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Fig. 3. Pose Prediction: Measurements and control commands arrive
with significant delays. To compensate for these delays, we keep a history
of observations and sent control commands between t−∆tvis and t+∆tcontrol
and re-calculate the EKF state when required. Note the large timespan with
no or only partial odometry observations.

2) Extended Kalman Filter: In order to fuse all available
data, we employ an extended Kalman filter (EKF). We
derived and calibrated a full motion model of the quadro-
copter’s flight dynamics and reaction to control commands,
which we will describe in more detail in Section IV-B. This
EKF is also used to compensate for the different time delays
in the system, arising from wireless LAN communication
and computationally complex visual tracking.

We found that height and horizontal velocity measure-
ments arrive with the same delay, which is slightly larger than
the delay of attitude measurements. The delay of visual pose
estimates ∆tvis is by far the largest. Furthermore we account
for the time required by a new control command to reach
the drone ∆tcontrol. All timing values given subsequently are
typical values for a good connection, the exact values depend
on the wireless connection quality and are determined by
a combination of regular ICMP echo requests sent to the
quadrocopter and calibration experiments.

Our approach works as follows: first, we time-stamp all
incoming data and store it in an observation buffer. Control
commands are then calculated using a prediction for the
quadrocopter’s pose at t +∆tcontrol. For this prediction, we
start with the saved state of the EKF at t−∆tvis (i.e., after
the last visual observation/unsuccessfully tracked frame).
Subsequently, we predict ahead up to t + ∆tcontrol, using
previously issued control commands and integrating stored
sensor measurements as observations. This is illustrated in
Fig. 3. With this approach, we are able to compensate
for delayed and missing observations at the expense of
recalculating the last cycles of the EKF.

3) PID Control: Based on the position and velocity
estimates from the EKF at t+∆tcontrol, we apply PID control
to steer the quadrocopter towards the desired goal location
p = (x̂, ŷ, ẑ,Ψ̂)T ∈R4 in a global coordinate system. Accord-
ing to the state estimate, we rotate the generated control
commands to the robot-centric coordinate system and send
them to the quadrocopter. For each of the four degrees-of-
freedom, we employ a separate PID controller for which we
experimentally determined suitable controller gains.

A. Scale Estimation

One of the key contributions of this paper is a closed-
form solution for estimating the scale λ∈R+ of a monocular
SLAM system. For this, we assume that the robot is able to
make noisy measurements of absolute distances or veloci-

ties from additional, metric sensors such as an ultrasound
altimeter.

As a first step, the quadrocopter measures in regular
intervals the d-dimensional distance traveled both using only
the visual SLAM system (subtracting start and end position)
and using only the metric sensors available (subtracting start
and end position, or integrating over estimated speeds). Each
interval gives a pair of samples xi,yi ∈Rd , where xi is scaled
according to the visual map and yi is in metric units. As both
xi and yi measure the motion of the quadrocopter, they are
related according to xi ≈ λyi.

More specifically, if we assume Gaussian noise in the
sensor measurements with constant variance1, we obtain

xi ∼N (λµi,σ
2
x I3×3) (1)

yi ∼N (µi,σ
2
y I3×3) (2)

where the µi ∈ Rd denote the true (unknown) distances
covered and σ2

x ,σ
2
y ∈ R+ the variances of the measurement

errors. Note that the individual µi are not constant but depend
on the actual distances traveled by the quadrocopter in the
measurement intervals.

One possibility to estimate λ is to minimize the sum of
squared differences (SSD) between the re-scaled measure-
ments, i.e., to compute one of the following:

λy
∗ := argmin

λ
∑

i
‖xi−λyi‖2 =

∑i xT
i yi

∑i yT
i yi

(3)

λx
∗ :=

(
argmin

λ
∑

i
‖λxi−yi‖2

)−1

=
∑i xT

i xi

∑i xT
i yi

. (4)

The difference between these two lines is whether one aims
at scaling the xi to the yi or vice versa. However, both
approaches lead to different results, none of which converges
to the true scale λ when adding more samples. To resolve
this, we propose a maximum likelihood (ML) approach, that
is estimating λ by minimizing the negative log-likelihood

L(µ1 . . .µn,λ ) ∝
1
2

n

∑
i=1

(
‖xi−λµi‖2

σ2
x

+
‖yi−µi‖2

σ2
y

)
(5)

By first minimizing over the µi and then over λ , it can be
shown analytically that (5) has a unique, global minimum at

µ∗i =
λ
∗
σ2

y xi +σ2
x yi

λ
∗2

σ2
y +σ2

x

(6)

λ
∗ =

sxx− syy + sign(sxy)
√
(sxx− syy)2 +4s2

xy

2σ
−1
x σysxy

(7)

with sxx := σ2
y ∑

n
i=1 xT

i xi, syy := σ2
x ∑

n
i=1 yT

i yi and sxy :=
σyσx ∑

n
i=1 xT

i yi. Together, these equations give a closed-
form solution for the ML estimator of λ , assuming the
measurement error variances σ2

x and σ2
y are known.

1The noise in xi does not depend on λ as it is proportional to the average
keypoint depth, which is normalized to 1 for the first keyframe.



B. State Prediction and Observation
In this section, we describe the state space, the observation

models and the motion model used in the EKF. The state
space consists of a total of ten state variables

xt := (xt ,yt ,zt , ẋt , ẏt , żt ,Φt ,Θt ,Ψt ,Ψ̇t)
T ∈ R10, (8)

where (xt ,yt ,zt) denotes the position of the quadrocopter in
m and (ẋt , ẏt , żt) the velocity in m/s, both in world coordinates.
Further, the state contains the roll Φt , pitch Θt and yaw Ψt
angle of the drone in deg, as well as the yaw-rotational speed
Ψ̇t in deg/s. In the following, we define for each sensor an
observation function h(xt) and describe how the respective
observation vector zt is composed from the sensor readings.

1) Odometry Observation Model: The quadrocopter
measures its horizontal speed v̂x,t and v̂y,t in its local co-
ordinate system, which we transform into the global frame
ẋt and ẏt . The roll and pitch angles Φ̂t and Θ̂t measured by
the accelerometer are direct observations of Φt and Θt . To
account for yaw-drift and uneven ground, we differentiate
the height measurements ĥt and yaw measurements Ψ̂t and
treat them as observations of the respective velocities. The
resulting observation function hI(xt) and measurement vector
zI,t is hence given by

hI(xt) :=


ẋt cosΨt − ẏt sinΨt
ẋt sinΨt + ẏt cosΨt

żt
Φt
Θt
Ψ̇t

 (9)

zI,t := (v̂x,t , v̂y,t ,(ĥt − ĥt−1),Φ̂t ,Θ̂t ,(Ψ̂t − Ψ̂t−1))
T (10)

2) Visual Observation Model: When PTAM success-
fully tracks a video frame, we scale the pose estimate by
the current estimate for the scaling factor λ

∗ and transform
it from the coordinate system of the front camera to the
coordinate system of the quadrocopter, leading to a direct
observation of the quadrocopter’s pose given by

hP(xt) := (xt ,yt ,zt ,Φt ,Θt ,Ψt)
T (11)

zP,t := f (EDCEC,t) (12)

where EC,t ∈ SE(3) is the estimated camera pose (scaled with
λ ), EDC ∈ SE(3) the constant transformation from the camera
to the quadrocopter coordinate system, and f : SE(3)→ R6

the transformation from an element of SE(3) to our roll-
pitch-yaw representation.

3) Prediction Model: The prediction model describes
how the state vector xt evolves from one time step to the next.
In particular, we approximate the quadrocopter’s horizontal
acceleration ẍ, ÿ based on its current state xt , and estimate
its vertical acceleration z̈, yaw-rotational acceleration Ψ̈ and
roll/pitch rotational speed Φ̇,Θ̇ based on the state xt and the
active control command ut .

The horizontal acceleration is proportional to the horizon-
tal force acting upon the quadrocopter, which is given by(

ẍ
ÿ

)
∝ facc− fdrag (13)

where fdrag denotes the drag and facc denotes the accelerating
force. The drag is approximately proportional to the horizon-
tal velocity of the quadrocopter, while facc depends on the
tilt angle. We approximate it by projecting the quadrocopter’s
z-axis onto the horizontal plane, which leads to

ẍ(xt) = c1 (cosΨt sinΦt cosΘt − sinΨt sinΘt)− c2 ẋt (14)
ÿ(xt) = c1 (−sinΨt sinΦt cosΘt − cosΨt sinΘt)− c2 ẏt (15)

We estimated the proportionality coefficients c1 and c2 from
data collected in a series of test flights. Note that this model
assumes that the overall thrust generated by the four rotors
is constant. Furthermore, we describe the influence of sent
control commands ut = (Φ̄t ,Θ̄t , ¯̇zt ,

¯̇
Ψt) by a linear model:

Φ̇(xt ,ut) = c3 Φ̄t − c4 Φt (16)

Θ̇(xt ,ut) = c3 Θ̄t − c4 Θt (17)

Ψ̈(xt ,ut) = c5
¯̇
Ψt − c6 Ψ̇t (18)

z̈(xt ,ut) = c7 ¯̇zt − c8 żt (19)

Again, we estimated the coefficients c3, . . . ,c8 from test flight
data. The overall state transition function is now given by

xt+1
yt+1
zt+1
ẋt+1
ẏt+1
żt+1
Φt+1
Θt+1
Ψt+1
Ψ̇t+1


←



xt
yt
zt
ẋt
ẏt
żt
Φt
Θt
Ψt
Ψ̇t


+δt



ẋt
ẏt
żt

ẍ(xt)
ÿ(xt)

z̈(xt ,ut)
Φ̇(xt ,ut)
Θ̇(xt ,ut)

Ψ̇t
Ψ̈(xt ,ut)


(20)

using the model specified in (14) to (19). Note that, due to
the many assumptions made, we do not claim the physical
correctness of this model. It however performs very well
in practice, which is mainly due to its completeness: the
behavior of all state parameters and the effect of all control
commands is approximated, allowing “blind” prediction, i.e.,
prediction without observations for a brief period of time
(∼ 125ms in practice, see Fig. 3).

V. EXPERIMENTS AND RESULTS

We conducted a series of real-world experiments to ana-
lyze the properties of the resulting system. The experiments
were conducted in different environments, i.e., both indoor
in rooms of varying size and visual appearance as well as
outdoor under the influence of sunlight and (slight) wind. A
selection of these environments is depicted in Fig. 4.

A. Scale Estimation Accuracy

To analyze the accuracy of the scale estimation method
derived in IV-A, we instructed the quadrocopter to fly a
fixed figure, while every second a new sample is taken
and the scale re-estimated. In the first set of flights, the
quadrocopter was commanded to move only vertically, such
that the samples mostly consist of altitude measurements.
In the second set, the quadrocopter was commanded to fly
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Fig. 4. Testing Environments: The top row shows an image of the quadrocopter flying, the bottom row the corresponding image from the quadrocopter’s
frontal camera. This shows that our system can operate robustly in different, real-world environments.
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Fig. 5. Scale Estimation Accuracy: The plots show the mean and standard
deviation of the the estimation error e, corresponding to the estimated length
of 1m, from horizontal and vertical motion. It can be seen that the scale
can be estimated accurately in both cases, it is however more accurate and
converges faster if the quadrocopter moves vertically.

a horizontal rectangle, such that primarily the IMU-based
velocity information is used. After each flight, we measured
the ground truth λ̂ by manually placing the quadrocopter at
two measurement points, and comparing the known distance
between these points with the distance measured by the
visual SLAM system. Note that due to the initial scale
normalization, the values for λ̂ roughly correspond to the
mean feature depth in meters of the first keyframe, which in
our experiments ranges from 2 m to 10 m. To provide better
comparability, we analyze and visualize the estimation error
e := λ

∗

λ̂
, corresponding to the estimated length of 1m.

Fig. 5 gives the mean error as well as the standard
deviation spread over 10 flights. As can be seen, our method
quickly and accurately estimates the scale from both types
of motion. Due to the superior accuracy of the altimeter
compared to the horizontal velocity estimates, the estimate
converges faster and is more accurate if the quadrocopter
moves vertically, i.e., convergence after 2s versus 15s, and
to a final accuracy ±1.7% versus ±5%. Note that in practice,
we allow for (and recommend) arbitrary motions during scale
estimation so that information from both sensor modalities
can be used to improve convergence. Large, sudden changes
in measured relative height can be attributed to uneven
ground, and removed automatically from the data set.
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Fig. 6. Flight Stability: Path taken and RMSE of the quadrocopter when
instructed to hold a target position for 60 s, in three of the environments
depicted in Fig. 4. It can be seen that the quadrocopter can hold a position
very accurately, even when perturbed by wind (right).

B. Positioning Accuracy

In this section, we evaluate the performance of the com-
plete system in terms of position control. We instructed
the quadrocopter to hold a target position over 60 s in
different environments and measure the root mean square
error (RMSE). The results are given in Fig. 6: the measured
RMSE lies between 4.9 cm (indoor) and 18.0 cm (outdoor).

C. Drift Elimination

To verify that the incorporation of a visual SLAM sys-
tem eliminates odometry drift, we compare the estimated
trajectory with and without the visual SLAM system. Fig. 7
shows the resulting paths, both for flying a fixed figure (left)
and for holding a target position while the quadrocopter is
being pushed away (right). Both flights took approximately
35 s, and the quadrocopter landed no more than 15 cm away
from its takeoff position. In contrast, the raw odometry
accumulated an error of 2.1 m for the fixed figure and 6m
when being pushed away - which is largely due to the relative
lack of texture on the floor. This experiment demonstrates
that the visual SLAM system efficiently eliminates pose drift
during maneuvering.

D. Figure Flying

Based on the accurate pose estimation and control, we
implemented a simple scripting language for flying pre-
specified maneuvers. Available commands in this scripting
language include take-off, landing, automatic initialization
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Fig. 7. Elimination of Odometry Drift: Horizontal path taken by the
quadrocopter as estimated by the EKF compared to the raw odometry (i.e.,
the integrated velocity estimates). Left: when flying a figure; right: when
being pushed away repeatedly from its target position. The odometry drift
is clearly visible, in particular when the quadrocopter is being pushed away.
When incorporating visual pose estimates, it is eliminated completely.

(take-off + PTAM map initialization) and approaching a
waypoint, both in absolute coordinates (with the world
origin at the take-off location) as well as relative to the
current location. Various parameters can be set during the
flight, for example to re-define the world origin, limit flight
speed, and the parameters for approaching a waypoint. A
waypoint has been “reached” after the quadrocopter reaches
and remains within a certain distance (default: 0.5 m) for a
certain time (default: 2.0 s). With this scripting language, we
were able to let the quadrocopter autonomously complete
a large variety of different figures including take-off and
map initialization, for example a rectangle and the “Haus
vom Nikolaus” as depicted in Fig. 1, both vertically and
horizontally. Demonstrations of these flight patterns are also
shown in the video accompanying this paper.

VI. CONCLUSION

In this paper, we presented a visual navigation system for
autonomous figure flying. Our system enables the quadro-
copter to visually navigate in unstructured, GPS-denied en-
vironments and does not require artificial landmarks nor prior
knowledge about the environment. We tested our system in
a set of extensive experiments in different real-world indoor
and outdoor environments and with different flight patterns.
We found in these experiments, that our system achieves an
average positioning accuracy of 4.9 cm (indoor) to 18.0 cm
(outdoor) and can robustly deal with communication delays
of up to 400 ms. With these experiments, we demonstrated
that accurate, robust and drift-free visual figure flights are
possible.

We plan to release our software as open-source in the near
future.
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