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Abstract

We present a dataset for evaluating the tracking accu-
racy of monocular visual odometry and SLAM methods.
It contains 50 real-world sequences comprising more than
100 minutes of video, recorded across dozens of different
environments – ranging from narrow indoor corridors to
wide outdoor scenes. All sequences contain mostly ex-
ploring camera motion, starting and ending at the same
position. This allows to evaluate tracking accuracy via
the accumulated drift from start to end, without requiring
ground truth for the full sequence. In contrast to existing
datasets, all sequences are photometrically calibrated. We
provide exposure times for each frame as reported by the
sensor, the camera response function, and dense lens atten-
uation factors. We also propose a novel, simple approach
to non-parametric vignette calibration, which requires min-
imal set-up and is easy to reproduce. Finally, we thoroughly
evaluate two existing methods (ORB-SLAM [16] and DSO
[4]) on the dataset, including an analysis of the effect of im-
age resolution, camera field of view, and the camera motion
direction.

1. Introduction
Structure from Motion or Simultaneous Localization and

Mapping (SLAM) has become an increasingly important
topic, since it is a fundamental building block for many
emerging technologies – from autonomous cars and quadro-
copters to virtual and augmented reality. In all these cases,
sensors and cameras built into the hardware are designed
to produce data well-suited for computer vision algorithms,
instead of capturing images optimized for human viewing.
In this paper we present a new monocular visual odome-
try (VO) / SLAM evaluation benchmark, that attempts to
resolve two current issues:

Sensors Intrinsics. Many existing methods are designed
to operate on, and are evaluated with, data captured by com-
modity cameras without taking advantage of knowing – or
even being able to influence – the full image formation
pipeline. Specifically, methods are designed to be robust

Figure 1. The TUM monoVO dataset. A single frame from each
of the 50 sequences. Note the wide variety of covered environ-
ments. The full dataset contains over 190’000 frames (105 min-
utes) of video taken with two different lenses, exposure times for
each frame, and a photometric calibration including camera re-
sponse and vignetting.

to (assumed unknown) automatic exposure changes, non-
linear response functions (gamma correction), lens attenua-
tion (vignetting), de-bayering artifacts, or even strong geo-
metric distortions caused by a rolling shutter. This is partic-
ularly true for modern keypoint detectors and descriptors,
which are robust or invariant to arbitrary monotonic bright-
ness changes. However, recent direct methods as well at-
tempt to compensate for automatic exposure changes, e.g.,
by optimizing an affine mapping between brightness values
in different images [6]. Most direct methods however sim-
ply assume constant exposure time [5, 17, 19, 13].

While this is the only way to evaluate on existing datasets
and with off-the-shelf commodity cameras (which often do
not allow to either read or set parameters like the exposure
time), we argue that for the above-mentioned use cases, this
ultimately is the wrong approach: sensors – including cam-
eras – can, and will be designed to fit the needs of the al-
gorithms processing their data. In turn, algorithms should
take full advantage of the sensor’s capabilities and incorpo-
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rate knowledge about the sensor design. Simple examples
are image exposure time and hardware gamma correction,
which are intentionally built into the camera to produce bet-
ter images. Instead of treating them as unknown noise fac-
tors and attempt to correct for them afterwards, they can
be treated as feature that can be modelled by, and incorpo-
rated into the algorithm – rendering the obtained data more
meaningful.

Benchmark Size. SLAM and VO are complex, very non-
linear estimation problems and often minuscule changes
can greatly affect the outcome. To obtain a meaningful
comparison between different methods and to avoid manual
overfitting to specific environments or motion patterns (ex-
cept for cases where this is specifically desired), algorithms
should be evaluated on large datasets in a wide variety of
scenes. However, existing datasets often contain only a
limited number of environments. The major reason for this
is that accurate ground truth acquisition is challenging, in
particular if a wide range of different environments is to be
covered: GPS/INS is limited in accuracy and only possible
in outdoor environments with adequate GPS reception.
External motion capture systems on the other hand are
costly and time-consuming to set up, and can only cover
small (indoor) environments.

The dataset published in this paper attempts to tackle
these two issues. First, it contains frame-wise exposure
times as reported by the sensor, as well as accurate calibra-
tions for the sensors response function and lens vignetting,
which enhances the performance particularly of direct ap-
proaches. Second, it contains 50 sequences with a total du-
ration of 105 minutes (see Figure 1), captured in dozens of
different environments. To make this possible, we propose a
new evaluation methodology which does not require ground
truth from external sensors – instead, tracking accuracy is
evaluated by measuring the accumulated drift that occurs
after a large loop. We further propose a novel, straight-
forward approach to calibrate a non-parametric response
function and vignetting map with minimal set up required,
and without imposing a parametric model which may not
suit all lenses / sensors.

1.1. Related Work: Datasets

There exists a number of datasets that can be used for
evaluating monocular SLAM or VO methods. We will here
list the most commonly used ones.

KITTI [9]: 21 stereo sequences recorded from a driving
car, motion patterns and environments are limited to
forward-motion and street-scenes. Images are pre-rectified,
raw sensor measurements or calibration datasets are not
available. The benchmark contains GPS-INS ground truth
poses for all frames.

EUROC MAV [2]: 11 stereo-inertial sequences from a
flying quadrocopter in three different indoor environments.
The benchmark contains ground truth poses for all frames,
as well as the raw sensor data and respective calibration
datasets.

TUM RGB-D [21]: 89 sequences in different cate-
gories (not all meant for SLAM) in various environments,
recorded with a commodity RGB-D sensor. They contain
strong motion blur and rolling-shutter artifacts, as well as
degenerate (rotation-only) motion patterns that cannot be
tracked well from monocular odometry alone. Sequences
are pre-rectified, the raw sensor data is not available. The
benchmark contains ground truth poses for all sequences.

ICL-NUIM [11]: 8 ray-traced RGB-D sequences from 2
different environments. It provides a ground truth intrinsic
calibration; a photometric calibration is not required, as the
virtual exposure time is constant. Some of the sequences
contain degenerate (rotation-only) motion patterns that can-
not be tracked well from a monocular camera alone.

1.2. Related Work: Photometric Calibration

Many approaches exist to calibrate and remove vi-
gnetting artefacts and account for non-linear response func-
tions. Early work focuses on image stitching and mosaick-
ing, where the required calibration parameters need to be
estimated from a small set of overlapping images [10] [14]
[1]. Since the available data is limited, such methods at-
tempt to find low-dimensional (parametric) function repre-
sentations, like radially symmetric polynomial representa-
tions for vignetting. More recent work [20, 12] has shown
that such representations may not be sufficiently expres-
sive to capture the complex nature of real-world lenses and
hence advocate non-parametric – dense – vignetting cali-
bration. In contrast to [20, 12], our formulation however
does not require a “uniformly lit white paper”, simplifying
the required calibration set-up.

For response function estimation, a well-known and
straight-forward method is that of Debevec and Malik [3],
which – like our approach – recovers a 28-valued lookup
table for the inverse response from two or more images of a
static scene at different exposures.

1.3. Paper Outline

The paper is organized as follows: In Section 2, we first
describe the hardware set-up, followed by both the used
distortion model (geometric calibration) in 2.2, as well as
photometric calibration (vignetting and response function)
and the proposed calibration procedure in 2.3. Section 3
describes the proposed loop-closure evaluation methodol-
ogy and respective error measures. Finally, in Section 4,
we give extensive evaluation results of two state-of-the-art
monocular SLAM / VO systems ORB-SLAM [16] and Di-
rect Sparse odometry (DSO) [4]. We further show some



Figure 2. Cameras used to capture the dataset. Left: narrow lens
(98◦ × 79◦ non-rectified field of view), right: wide lens (148◦ ×
122◦ non-rectified field of view).

exemplary image data and describe the dataset contents. In
addition to the dataset, we publish all code and raw evalua-
tion data as open-source.

2. Calibration
We provide both a standard camera intrinsic calibration

using the FOV camera model, as well as a photometric cali-
bration, including vignetting and camera response function.

2.1. Hardware

The cameras used for recording the sequences are uEye
UI-3241LE-M-GL monochrome, global shutter CMOS
cameras from IDS. They are capable of recording 1280 ×
1024 videos at up to 60fps. Sequences are recorded at dif-
ferent framerates ranging from 20fps to 50fps with jpeg-
compression. For some sequences hardware gamma cor-
rection is enabled and for some it is disabled. We use two
different lenses (Lensagon BM2420 with a field of view of
148◦ × 122◦, as well as a Lensagon BM4018S118 with a
field of view of 98◦ × 79◦), as shown in Figure 2. Figure 1
shows a number of example images from the dataset.

2.2. Geometric Intrinsic Calibration

We use the pinhole camera model in combination with
a FOV distortion model, since it is well-suited for the used
fisheye lenses. For a given 3D point (x, y, z) ∈ R3 in the
camera coordinate system, the corresponding point in the
image (ud, vd) ∈ Ω is computed by first applying a pinhole
projection followed by radial distortion and conversion to
pixel coordinates[
ud
vd

]
=

1

ruω
arctan

(
2ru tan

(ω
2

))[
fx

x
z

fy
y
z

]
+

[
cx
cy

]
, (1)

where ru :=
√

(x
z )2 + (y

z )2 is the radius of the point in
normalized image coordinates.

A useful property of this model is the existence of a
closed-form inverse: for a given point the image (ud, vd)

ir
ra

di
an

ce
U
(I
)

0 50 100 150 200 250
0

50

100

150

200

250

pixel value I

Figure 3. Response calibration. The top row shows five out of
over 1000 images of the same scene at different exposures, used
for calibration. The bottom-left image shows the estimated log-
irradiance log(B′); the bottom-right image shows the estimated
inverse response U , with enabled hardware gamma correction
(blue) and without (green).

and depth d, the corresponding 3D point can be computed
by first converting it back to normalized image coordinates[

ũd
ṽd

]
=

[
(ud − cx)f−1

x

(vd − cy)f−1
y

]
, (2)

then removing radial distortion[
ũu
ṽu

]
=

tan(rdω)

2rd tan ω
2

[
ũd
ṽd

]
, (3)

where rd :=
√
ũ2
d + ṽ2

d. Afterwards the point is back-
projected using (x, y, z) = d(ũu, ṽu, 1). We use the camera
calibrator provided with the open-source implementation
of PTAM [15] to calibrate the parameters [fx, fy, cx, cy, ω]
from a number of checkerboard images.

2.3. Photometric Calibration

We provide photometric calibrations for all sequences.
We calibrate the camera response function G, as well as
pixel-wise attenuation factors V : Ω → [0, 1] (vignetting).
Without known irradiance, both G and V are only observ-
able up to a scalar factor. The combined image formation
model is then given by

I(x) = G
(
tV (x)B(x)

)
, (4)

where t is the exposure time, B the irradiance image (up
to a scalar factor), and I the observed pixel value. As a
shorthand, we will use U := G−1 for the inverse response
function.

2.3.1 Response Calibration

We first calibrate the camera response function from a se-
quence of images taken of a static scene with different



(known) exposure time. The content of the scene is arbitrary
– however to well-constrain the problem, it should contain
a wide range of gray values. We first observe that in a static
scene, the attenuation factors can be absorbed in the irradi-
ance image, i.e.,

I(x) = G
(
tB′(x)

)
, (5)

with B′(x) := V (x)B(x). Given a number of images
Ii, corresponding exposure times ti and a Gaussian white
noise assumption on U(Ii(x)), this leads to the following
Maximum-Likelihood energy formulation

E(U,B′) =
∑
i

∑
x∈Ω

(
U
(
Ii(x)

)
− tiB′(x)

)2

. (6)

For overexposed pixels, U is not well defined, hence they
are removed from the estimation. We now minimize (6)
alternatingly for U and B′. Note that fixing either U or
B′ de-couples all remaining values, such that minimization
becomes trivial:

U(k)∗ = argmin
U(k)

E(U,B′) =

∑
Ωk
tiB
′(x)

|Ωk|
(7)

B′(x)∗ = argmin
B′(x)

E(U,B′) =

∑
i tiU

(
Ii(x)

)∑
i t

2
i

, (8)

where Ωk := {i,x|Ii(x) = k} is the set of all pixels in all
images that have intensity k. Note that the resulting U may
not be monotonic – which is a pre-requisite for invertibil-
ity. In this case it needs to be smoothed or perturbed; how-
ever for all our calibration datasets this does not happen.
The value for U(255) is never observed since overexposed
pixels are removed, and needs to be extrapolated from the
adjacent values. After minimization, U is scaled such that
U(255) = 255 to disambiguate the unknown scalar factor.
Figure 3 shows the estimated values for one of the calibra-
tion sequences.

Note on Observability. In contrast to [3], we do not
employ a smoothness prior on U – instead, we use large
amounts of data (1000 images covering 120 different expo-
sure times, ranging from 0.05ms to 20ms in multiplicative
increments of 1.05). This is done by recording a video of a
static scene while slowly changing the camera’s exposure.
If only a small number of images or exposure times is avail-
able, a regularized approach will be required.

2.3.2 Non-parametric Vignette Calibration

We estimate a non-parametric (dense) vignetting map
V : Ω→ [0, 1] from a sequence of images showing a planar
scene. Apart from planarity, we only require the scene to
have a bright (potentially non-uniform) color and to be fully
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Figure 4. Vignette calibration. Top-left: four out of over 700
images used for vignette calibration, overlaid with the 3D plane
P in red. Top-right: estimated irradiance image C for plane P .
Bottom-right: estimated dense attenuation factors V , for both used
lenses. Bottom-left: horizontal cross-section through V at the
middle of the image.

Lambertian – in practice, a predominantly white wall serves
well. This is in contrast to [20], which assumes a uniformly
coloured flat surface. For simplicity, we estimate the cam-
era pose with respect to the planar surface P ⊂ R3 using an
AR Marker [8]; however any other method, including a full
monocular SLAM system can be used. For each image Ii,
this results in a mapping π : P → Ω that projects a point on
the 3D plane to a pixel in the image (if it is visible).

Again, we assume Gaussian white noise on
U(Ii(πi(x))), leading to the Maximum-Likelihood
energy

E(C, V )=
∑

i,x∈P

(
tiV
([
πi(x)

])
C(x)− U

(
Ii
(
πi(x)

)))2

,

(9)

where C : P → R is the unknown irradiance of the pla-
nar surface. In practice we define the surface to be square,
and discretise it into 1000 × 1000 points; [·] then denotes
rounding to the closest discretised position.

The energy E(C, V ) can be minimized alternatingly,
again fixing one variable decouples all other unknowns,



such that minimization becomes trivial:

C∗(x) = argmin
C(x)

E(C, V )

=

∑
i tiV

(
[πi(x)]

)
U
(
Ii(πi(x))

)∑
i

(
tiV ([πi(x)])

)2 , (10)

V ∗(x) = argmin
V (x)

E(C, V )

=

∑
i tiC(x)U

(
Ii(πi(x))

)∑
i

(
tiC(x)

)2 . (11)

Again, we do not impose any explicit smoothness prior or
enforce certain properties (like radial symmetry) by finding
a parametric representation for V . Instead, we choose to
solve the problem by using large amounts (several hundred
images) of data. Since V is only observable up to a scalar
factor, we scale the result such that max(V ) = 1. Figure 4
shows the estimated attenuation factor map for both lenses.
The high degree of radial symmetry and smoothness comes
solely from the data term, without additional prior.

Note on Observability. Without regularizer, the opti-
mization problem (9) is well-constrained if and only if
the corresponding bipartite graph between all optimization
variables is fully connected. In practice, the probability that
this is not the case is negligible when using sufficient in-
put images: Let (A,B,E) be a random bipartite graph with
|A| = |B| = n nodes and |E| = [n(log n + c)] edges,
where c is a positive real number. We argue that the com-
plex nature of 3D projection and perspective warping jus-
tifies the approximation of the resulting residual graph as
random, provided the input images cover a wide range of
viewpoints. Using the Erdős-Rényi theorem [7], it can be
shown that for n → ∞, the probability of the graph be-
ing connected is given by P = e−2e−c

[18]. In our case,
n ≈ 10002, which is sufficiently large for this approxima-
tion to be good. This implies that 30n residuals (i.e., 30
images with the full plane visible) suffice for the problem
to be almost certainly well-defined (P > 0.999999). To
obtain a good solution and fast convergence, a significantly
larger number of input images is desirable (we use several
hundred images) which are easily captured by taking a short
(60s) video, that covers different image regions with differ-
ent plane regions.

3. Evaluation Metrics
3.1. Evaluation from Loop-Closure

The dataset focuses on a large variety of real-world in-
door and outdoor scenes, for which it is very difficult to
obtain metric ground truth poses. Instead, all sequences
contain exploring motion, and have one large loop-closure

Figure 5. Loop-closure alignment. Explicit loop-closure align-
ment for 4 selected sequences, created with LSD-SLAM. The red
and blue line correspond to the first and last segment of the full
trajectory.

at the end: The first and the last 10-20 seconds of each
sequence show the same, easy-to-track scene, with slow,
loopy camera motion. We use LSD-SLAM [5] to track
only these segments, and – very precisely – align the start
and end segment, generating a “ground truth” for their rel-
ative pose1. To provide better comparability between the
sequences, the ground truth scale is normalized such that
the full trajectory has a length of approximately 100.

The tracking accuracy of a VO method can then be eval-
uated in terms of the accumulated error (drift) over the full
sequence. Note that this evaluation method is only valid
if the VO/SLAM method does not perform loop-closure
itself. To evaluate full SLAM systems like ORB-SLAM
or LSD-SLAM, loop-closure detection needs to be dis-
abled. We argue that even for full SLAM methods, the
amount of drift accumulated before closing the loop is a
good indicator for the accuracy. In particular, it is strongly
correlated with the long-term accuracy after loop-closure.

It is important to mention that apart from accuracy, full
SLAM includes a number of additional important chal-
lenges such as loop-closure detection and subsequent map
correction, re-localization, and long-term map maintenance
(life-long mapping) – all of which are not evaluated with
the proposed set-up.

3.2. Error Metric

Evaluation proceeds as follows: Let p1 . . . pn ∈ R3 de-
note the tracked positions of frames 1 to n. Let S ⊂ [1;n]
and E ⊂ [1;n] be the frame-indices for the start- and end-
segments for which aligned ground truth positions p̂ ∈ R3

1Some sequences begin and end in a room which is equipped with a
motion capture system. For those sequences, we use the metric ground
truth from the MoCap.
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Figure 6. Evaluation metric. The right plot shows a tracked
(x, y, z)-trajectory for sequence 16. We analyse the effect of
drift on the different error metrics by adding an artificial scale-
jump of ×0.8 or rotation-jump of 10◦ at different time-points
throughout the sequence: The left plot shows how the error metrics
depend on the time-point where drift occurs (scale: dashed, rota-
tion: solid). Both et and ermse are heavily correlated with where
the drift occurs (the further away, the more impact it has). The
alignment error ealign in contrast behaves much more stable, i.e.,
the error is less susceptible to where the drift occurs.

are provided. First, we align the tracked trajectory with
both the start- and end-segment independently, providing
two relative transformations

T gt
s := argmin

T∈Sim(3)

∑
i∈S

(Tpi − p̂i)2 (12)

T gt
e := argmin

T∈Sim(3)

∑
i∈E

(Tpi − p̂i)2. (13)

For this step it is important, that both E and S con-
tain sufficient poses in a non-degenerate configuration
to well-constrain the alignment – hence the loopy mo-
tion patterns at the beginning and end of each sequence.
The accumulated drift can now be computed as Tdrift =
T gt
e (T gt

s )−1 ∈ Sim(3), from which we can explicitly com-
pute (a) the scale-drift es := scale(Tdrift), (b) the rotation-
drift er := rotation(Tdrift) and (c) the translation-drift et :=
‖translation(Tdrift)‖.

We further define a combined error measure, the align-
ment error, which equally takes into account the error
caused by scale, rotation and translation drift over the full
trajectory as

ealign :=

√√√√ 1

n

n∑
i=1

‖T gt
s pi − T gt

e pi‖22, (14)

which is the translational RMSE between the tracked tra-
jectory, when aligned (a) to the start segment and (b) to the
end segment. Figure 7 shows an example. We choose this
metric, since

• it can be applied to other SLAM / VO modes with
different observability modes (like visual-inertial or
stereo),
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Figure 7. Alignment error. The top shows sequence 40,
tracked using [4]. The accumulated drift is clearly visible in the
reconstruction (the two enlarged segments should overlap). The
bottom plots show the loop-closure ground truth (dashed, green),
and the tracked trajectory (1) aligned to the start-segment in blue
and (2) aligned to the end segment in red (the center plot shows
the full trajectory, the left and right plot show a close-up of the
start- and end-segment respectively). The alignment error ealign

computes the RMSE between the red and the blue line, over the
full trajectory. For this example, ealign = 2.27, es = 1.12 and
er = 3.9◦.

• it is equally affected by scale, rotation, and translation
drift, implicitly weighted by their effect on the tracked
position,

• it can be applied for algorithms which compute only
poses for a subset of frames (e.g. keyframes), as long
as start- and end-segment contain sufficient frames for
alignment, and

• it better reflects the overall accuracy of the algorithm
than the translational drift drift et or the joint RMSE

ermse:=

√
min

T∈Sim(3)

1

|S ∪ E|
∑

i∈S∪E
(Tpi − p̂i)2, (15)

as shown in Figure 6. In particular, ermse becomes de-
generate for sequences where the accumulated trans-
lational drift surpasses the standard deviation of p̂,
since the alignment (15) will simply optimize to
scale(T ) ≈ 0.
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Figure 8. Evaluation result. Cumulative error-plots over all 50
sequences, run forwards and backwards, 5 times each to account
for non-deterministic behaviour. For each error-value (x-axis), the
plot shows the number of runs (y-axis) for which the achieved
error was smaller. Note that since es is a multiplicative factor,
we summarize e′s = max(es, e

−1
s ). The solid line corresponds to

non-real time execution, the dashed line to hard enforced real-time
processing.

4. Benchmark

When evaluating accuracy of SLAM or VO methods,
a common issue is that not all methods work on all se-
quences. This is particularely true for monocular methods,
as sequences with degenerate (rotation-only) motion or en-
tirely texture-less scenes (white walls) cannot be tracked.
All methods will then either produce arbitrarily bad (ran-
dom) estimates or heuristically decide they are “lost”, and
not provide an estimate at all. In both cases, averaging over
a set of results containing such outliers is not meaningful,
since the average will mostly reflect the (arbitrarily bad) er-
rors when tracking fails, or the threshold when the algo-
rithm decides to not provide an estimate at all.

A common approach hence is to show only results on
a hand-picked subset of sequences on which the compared
methods do not fail (encouraging manual overfitting), or to
show large tables with error values, which is not practicable
for a dataset containing 50 sequences. A better approach is
to summarize tracking accuracy as cumulative distribution,
visualizing on how many sequences the error is below a cer-
tain threshold – it shows both the accuracy on sequences
where a method works well, as well as the method’s robust-
ness, i.e., on how many sequences it does not fail.

Figure 8 shows such cumulative error-plots for two
methods, DSO (Direct Sparse Odometry) [4] and ORB-
SLAM [16], evaluated on the presented dataset. Each of
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Figure 9. Different field of view. Alignment error when changing
the horizontal field of view (i.e., using different focal lengths f for
the rectified images). The top shows two example images, recti-
fied with the different focal lengths. “f=min” refers to the default
setting, which differs for the two used lenses – as comparison, the
horizontal field of view of a Kinect camera is 63◦. A smaller field
of view significantly decreases accuracy and robustness, for both
methods (note that for a cropped field of view, some sequences
contain segments with only a white wall visible).

the 50 sequences is run 5 times forwards and 5 times back-
wards, giving a total of 500 runs for each line shown in the
plots.

Algorithm Parameter Settings. Since both methods do
not support the FOV camera model, we run the evaluation
on pinhole-rectified images with VGA (640 × 480) resolu-
tion. Further, we disable explicit loop-closure detection and
re-localization to allow application of our metric, and re-
duce the threshold where ORB-SLAM decides it is lost to
10 inlier observations. Note that we do not impose any re-
striction on implicit, “small” loop-closures, as long as these
are found by ORB-SLAM’s local mapping component (i.e.,
are included in the co-visibility graph). Since DSO does
not perform loop-closure or re-localization, we can use the
default settings. We run both algorithms in a non-real-time
setting (at roughly one quarter speed), allowing to use 20
dedicated workstations with different CPUs to obtain the
results presented in this paper. Figure 8 additionally shows
results obtained when hard-enforcing real-time execution
(dashed lines), obtained on the same workstation which is
equipped with an i7-4910MQ CPU.

Data Variations. A good way to further to analyse the
performance of an algorithm is to vary the sequences in a
number of ways, simulating different real-world scenarios:

• Figure 9 shows the tracking accuracy when rectifying
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Figure 10. Different image resolution. Alignment error when
changing the rectified image resolution. Note that the algorithms
were not run in real time, hence the change in computational com-
plexity is not accounted for. While for ORB-SLAM the resolution
has a strong effect, DSO is only marginally affected – which is due
to the sub-pixel-accurate nature of direct approaches.
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Figure 11. Dataset motion bias. Alignment error when running
all sequences forwards and backwards, as well as the combination
of both (default): While DSO is largely unaffected by this, ORB-
SLAM performs significantly better for backwards-motion. This
is a classical example of “dataset bias”, and shows the importance
of evaluating on large datasets, covering a diverse range of envi-
ronments and motion patterns.

the images to different fields of view, while keeping
the same resolution (640 × 480). Since the raw data
has a resolution of 1280× 1024, the caused distortion
is negligible.

• Figure 10 shows the tracking accuracy when rectifying
the images to different resolutions, while keeping the
same field of view.

• Figure 11 shows the tracking accuracy when playing
sequences only forwards compared to the results ob-
tained when playing them only backwards – switching
between predominantly forward-motion and predomi-
nantly backward-motion.

In each of the three figures, the bold lines correspond to
the default parameter settings, which are the same across
all evaluations. We further give some example results and
corresponding video snippets in Table 1.

Ground Truth Validation. Since for most sequences, the
used loop-closure ground truth is computed with a SLAM-
algorithm (LSD-SLAM) itself, it is not perfectly accurate.
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Figure 12. Start- and end-segment error. RMSE for alignment
with the provided start- and end-segment ground truth. Note that
it is roughly 100 times lower than ealign, and very similar for both
evaluated methods. It can also be observed, that the automatic ini-
tialization of DSO fails occasionally (in that case all errors, includ-
ing the start-segment error, are set to infinity), while this is not the
case for ORB-SLAM. If the algorithm fails to provide an estimate
for the full trajectory, the end-segment error is set to infinity.

We can however validate it by looking at the RMSE when
aligning the start- and end-segment, i.e., the minima of
(12) and (13) respectively. They are summarized in Figure
12. Note the difference in order of magnitude: The RMSE
within start- and end-segment is roughly 100 times smaller
than the alignment RMSE, and very similar for both eval-
uated methods. This is a strong indicator that almost all of
the alignment error originates from accumulated drift, and
not from noise in the ground truth.

4.1. Dataset

The full dataset, as well as preview-videos for all se-
quences are available on

http://vision.in.tum.de/mono-dataset

We provide

• Raw camera images of all 50 sequences (43GB;
190’000 frames in total), with frame-wise exposure
times and computed ground truth alignment of start-
and end-segment.
• Geometric (FOV distortion model) and photometric

calibrations (vignetting and response function).
• Calibration datasets (13GB) containing (1)

checkerboard-images for geometric calibration,
(2) several sequences suitable for the proposed vi-
gnette and response function calibration, (3) images
of a uniformly lit white paper.
• Minimal c++ code for reading, pinhole-rectifying, and

photometrically undistorting the images, as well as
for performing photometric calibration as proposed in
Section 2.3.
• Matlab scripts to compute the proposed error metrics,

as well as the raw tracking data for all runs used to
create the plots and figures in Section 4.

http://vision.in.tum.de/mono-dataset


Sequence Selected Video Frames DSO ORB-SLAM
sq 01
1:35 min
50 fps

ealign = 0.6 (0.5–0.8)

er = 0.61 (0.37–0.83)

es = 0.93 (0.91–0.94)

ealign = 2.8 (1.9–6.2)

er = 1.91 (1.18–9.72)

es = 0.70 (0.46–0.80)

sq 21
4:33 min
20 fps

ealign = 4.2 (3.7–4.5)

er = 0.83 (0.76–0.98)

es = 0.74 (0.73–0.77)

ealign = 155 (127–254)

er = 6.0 (3.0–40.7)

es = 0.03 (0.01–0.04)

sq 31
2:33 min
21 fps

ealign = 0.6 (0.6–0.7)

er = 1.34 (1.19–1.42)

es = 0.94 (0.93–0.97)

ealign = 5.7 (4.8–7.2)

er = 0.90 (0.59–3.68)

es = 0.57 (0.51–0.62)

sq 38
2:13 min
25 fps

ealign = 0.5 (0.5–0.6)

er = 1.06 (0.80–1.40)

es = 1.04 (1.02–1.04)

ealign = 28 (13–∞)

er = 19.3 (4.6–∞)

es = 0.34 (0.16–∞)

sq 50
2:41 min
25 fps

ealign = 0.8 (0.8–1.0)

er = 0.62 (0.54–0.72)

es = 0.99 (0.97–1.01)

ealign = 7.5 (5.7–864)

er = 2.40 (1.01–79)

es = 0.58 (0.02–0.66)

Table 1. Example results. Errors (alignment error ealign, scale-drift es as multiplier, and rotation-drift er in degree), as well as some selected
frames for five example sequences when running them forwards. We show the median, the minimum, and maximum error respectively
over 10 independent runs.

4.2. Known Issues

• Even though we use industry-grade cameras, the SDK
provided by the manufacturer only allows to asyn-
chronously query the current exposure time. Thus,
in some rare cases, the logged exposure time may be
shifted by one frame.
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M. Marı́n-Jiménez. Automatic generation and detection of
highly reliable fiducial markers under occlusion. Pattern
Recognition, 47(6):2280 – 2292, 2014. 4

[9] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In Inter-
national Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2012. 2

[10] D. Goldman and J. Chen. Vignette and exposure calibration
and compensation. In International Conference on Computer
Vision (ICCV), 2005. 2

[11] A. Handa, T. Whelan, J. McDonald, and A. Davison. A
benchmark for RGB-D visual odometry, 3D reconstruction
and SLAM. In International Conference on Robotics and
Automation (ICRA), 2014. 2

[12] C. Kerl, M. Souiai, J. Sturm, and D. Cremers. Towards
illumination-invariant 3d reconstruction using ToF RGB-D
cameras. In International Conference on 3D Vision (3DV),
2014. 2

[13] C. Kerl, J. Sturm, and D. Cremers. Dense visual SLAM for
RGB-D cameras. In International Conference on Intelligent
Robot Systems (IROS), 2013. 1

[14] S. Kim and M. Pollefeys. Robust radiometric calibration and
vignetting correction. 30(4):562–576, 2008. 2

[15] G. Klein and D. Murray. Parallel tracking and mapping for
small AR workspaces. In International Symposium on Mixed
and Augmented Reality (ISMAR), 2007. 3

[16] R. Mur-Artal, J. Montiel, and J. Tardos. ORB-SLAM: a ver-
satile and accurate monocular SLAM system. Transactions
on Robotics, 31(5):1147–1163, 2015. 1, 2, 7

[17] R. Newcombe, S. Lovegrove, and A. Davison. DTAM:
Dense tracking and mapping in real-time. In International
Conference on Computer Vision (ICCV), 2011. 1

[18] I. Palasti. On the connectedness of bichromatic random
graphs. Publ. Math. Inst. Hung. Acad. Sci., 8:341 – 440,
1963. 5

[19] M. Pizzoli, C. Forster, and D. Scaramuzza. REMODE: Prob-
abilistic, monocular dense reconstruction in real time. In In-
ternational Conference on Robotics and Automation (ICRA),
2014. 1

[20] J. P. S. Alexandrov and M. Vincze. Color correction for 3D
mapping with RGB-D cameras. In International Conference
on Intelligent Robot Systems (IROS), 2016. 2, 4

[21] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cre-
mers. A benchmark for the evaluation of RGB-D SLAM
systems. In International Conference on Intelligent Robot
Systems (IROS), 2012. 2


