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Abstract

Most current approaches to street-scene 3D reconstruc-
tion from a driving car to date rely on 3D laser scan-
ning or tedious offline computation from visual images.
In this paper, we compare a real-time capable 3D recon-
struction method using a stereo extension of large-scale di-
rect SLAM (LSD-SLAM) with laser-based maps and tradi-
tional stereo reconstructions based on processing individ-
ual stereo frames. In our reconstructions, small-baseline
comparison over several subsequent frames are fused with
fixed-baseline disparity from the stereo camera setup. These
results demonstrate that our direct SLAM technique pro-
vides an excellent compromise between speed and accuracy,
generating visually pleasing and globally consistent semi-
dense reconstructions of the environment in real-time on a
single CPU.

1. Introduction

The 3D reconstruction of environments has been a re-
search topic in computer vision for many years with many
applications in robotics or surveying. In particular this
problem is essential for creating self-driving vehicles, since
3D maps are required for localization and obstacle detec-
tion.

In the beginning, laser-based distance sensors were pri-
marily used for 3D reconstruction [4]. However, these so-
lutions have several drawbacks. Laser scanners usually are
quiet expensive and produce a sparse set of measurements
which are subject to rolling shutter effects under motion.

Recently, the development of powerful camera and com-
puting hardware as well as tremendous research progress
in the field of computer vision have fueled novel research
in the area of real-time 3D reconstruction with RGB-D,
monocular, and stereo cameras. Whereas traditional vi-
sual SLAM techniques are based on keypoints, and camera
tracking and dense stereo reconstruction are done individu-
ally, in this paper, we demonstrate that accurate and consis-
tent results can be obtained with a direct real-time capable
SLAM technique for stereo cameras. To this end, we si-
multaneously track the 6D pose of the stereo camera and

Figure 1. Reconstruction of a street-scene obtained with Large-
scale Direct SLAM using a stereo camera. The method uses static
and temporal stereo to compute semi-dense maps, which are then
used to track camera motion. The figure shows a sample 3D recon-
struction on one of the sequences from the popular Kitti dataset.

reconstruct semi-dense depth maps using spatial and tem-
poral stereo cues. A loop closure thread running in the
background ensures globally consistent reconstructions of
the environment.

We evaluate the reconstruction quality of our method on
the popular Kitti dataset [8]. It contains images captured
from a synchronized stereo pair which is mounted on the
roof of a car driving through a city. The dataset also pro-
vides point clouds from a Velodyne scanner, which we use
as ground-truth to evaluate the accuracy of our reconstruc-
tion method. We also compare depth estimation accuracy of
our approach with other state-of-the-art stereo reconstruc-
tion methods.



Figure 2. Top-down view on the reconstructions on the Kitti sequences 00-09 obtained with our method.

1.1. Related Work

Traditionally, laser scanners have been used for obtain-
ing 3D reconstructions of environments. Several research
communities tackle this problem using laser scanners, in-
cluding geomatics (e.g. [22]), computer graphics (e.g. [21]),
and robotics (e.g. [17]). The popularity of laser scanners
stems from the fact that they directly measure 3D point
clouds with high accuracy. Still, their measurement fre-
quency is limited since typically the laser beam is redirected
in all directions using mechanically moving parts. In effect,
either scanning time is slow, scanners become huge with
many individual beams, or sparse scans are produced.

For the alignment of the 3D point clouds produced
by static laser scanners, typically variants of the Iterative
Closest Point (ICP) algorithm [2] are used. An exten-
sive overview and comparisons of different variants can be
found in [ 18], but most of them are not capable of real-time
reconstruction of large-scale environments, such as cities.

If the laser scanner itself moves during acquisition, e.g.
on a self-driving car, spatial referencing of the individual 3D

measurements becomes more difficult. An accurate odom-
etry and mapping system that utilizes laser scans during
motion has been presented in [23]. Real-time capability is
achieved by running 6D motion tracking of the laser scan-
ner at high frequency on a small time-slice of points and
registering all available data at lower frequency. Recently,
this algorithm has been extended to use stereo images to
improve the odometry accuracy [24].

Camera based 3D reconstruction methods can be divided
into sparse and dense methods. Sparse methods typically
use bundle adjustment techniques to simultaneously track a
motion of the camera and estimate positions of the observed
keypoints. Parallel Tracking and Mapping (PTAM [13]) is
a prominent example which requires just a single monoc-
ular camera to perform 3D reconstruction, however in the
monocular case, the scale of the map is not observable. This
problem is tackled in FrameSLAM [14] and RSLAM [16]
which also apply bundle adjustment. Through the use of
stereo cameras with known baseline, these methods are ca-
pable to estimate metric scale. Some stereo SLAM meth-



ods estimate camera motion based on sparse interest points
[12], but use a dense stereo-processing algorithms in a sec-
ond stage to obtain dense 3D maps [15, 10].

Over the last decades, a large amount of the algorithms
for stereo reconstructions have been developed. Methods
using fixed-baseline rectified images became very popular
because of their low computational costs and accurate re-
sults. These algorithms can be divided into local and global.
Local methods such as block-matching (e.g. [1]) use only
the local neighborhood of the pixel when searching for the
corresponding pixel in a different image. This makes them
fast, but usually resulting reconstructions are not spatially
consistent. Global methods (e.g. [1 1, 19]) on the contrary
use regularization to improve spatial consistency, which re-
sults in better reconstructions but also requires much higher
computational costs.

2. Reference Methods

In the following, we discuss some of the most prominent
real-time capable stereo reconstruction algorithms which
we will use as reference for comparative evaluation with
our method.

2.1. Block Matching

The Block Matching (BM) algorithm is one of the most
simple local algorithms for stereo reconstruction. First im-
plementations date back to the eighties [ 1] and comprehen-
sive descriptions can be found in [3] and [20]. It estimates a
disparity by searching for the most similar rectangular patch
in the second stereo image using some patch comparison
metric. Ideally a metric should be tolerant to intensity dif-
ferences, such as change of camera gain or bias, and also
tolerant to deformations when dealing with slanted surfaces.
One typical example of such a metric is normalized cross-
correlation.

The outcome of the algorithm is sensitive to the selected
local window size. If the window size is small, low-textured
areas will not be reconstructed since no distinct features will
fit into a window. On the other hand a large window size
will result in over-smoothed and low-detail reconstructions
in highly textured areas.

2.2. Semi-Global Block Matching

Semi-Global Block Matching (SGBM) proposed in [11]
is an algorithm that estimates optimal disparities along 1D
lines using a polynomial time algorithm. This allows the
algorithm to produce more accurate results than local meth-
ods, but since disparities are optimized only along one di-
rection the results are typically worse than global methods
that regularize in the 2D image domain.

2.3. Efficient Large-Scale Stereo Matching

The Efficient Large-Scale Stereo (elas) Matching
method proposed in [9] uses a set of support points that can
be reliably matched between the images for speeding up dis-
parity computations on high-resolution images. Based on
the matched support points, maximum a-posteriory estima-
tion yields a dense disparity map.

3. Method

Our approach to real-time 3D reconstruction is based
on a stereo-extension to the LSD-SLAM [6] method. In
LSD-SLAM, key-frames along the camera trajectory are
extracted. The motion of the camera is tracked towards a
reference key-frame using direct image alignment. Concur-
rently, semi-dense depth at high-gradient pixels in the refer-
ence key-frame is estimated from stereo towards the current
frame. For SLAM on the global scale, the relative poses be-
tween the key-frames is estimated using scale-aware direct
image alignment, and the scale and view poses of the refer-
ence key-frames are estimated using graph optimization.

In our stereo-extension to LSD-SLAM, scale is directly
observable through the fixed baseline of the stereo camera.
Also for depth estimation, now also static stereo through
the fixed baseline complements the temporal stereo of the
tracked frames towards the reference key-frame. In tempo-
ral stereo, disparity can be estimated along epipolar lines
whose direction depends on the motion direction of the
camera. This extends the fixed direction for disparity es-
timation of the static stereo camera. On the other hand, the
baseline of the stereo camera can be precisely calibrated in
advance and allows for determing reconstruction scale un-
ambiguously.

In this paper we use a stereo version of the algorithm,
since the monocular version [7] does not perform well on
the Kitti sequences and fails frequently. This is presumably
due to the large inter-frame motion along the line-of-sight
of the camera.

In the following we will briefly describe the main steps
of our stereo LSD-SLAM method. Special focus is given to
semi-dense depth estimation and 3D reconstruction.

3.1. Notation

We briefly introduce basic notation that we will use
throughout the paper. Matrices will be denoted by bold
capital letters (R), while bold lower case letters are used
for vectors (§). The operator -], selects the n-th row of a
matrix. The symbol d denotes the inverse d = 2z~ ! of depth
z.

The global map is maintained as a set of keyframes
K; = {I Lrr D;, V;}. They include a left and right stereo
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image If/T: Q — R, an inverse depth map D;: Qp, — RT
and a variance map V;: Qp, — RT. Depth and variance



Figure 3. Top down view on the reconstruction obtained with out method on Kitti sequence 05 with two close views.

are only maintained for one of the images in the stereo
pair. We assume the image domain 2 C R? to be given
in stereo-rectified image coordinates, i.e., the intrinsic and
extrinsic camera parameters are known a-priori. The do-
main Qp, C (2 is the semi-dense restriction to the pixels
which are selected for depth estimation.

We denote pixel coordinates by u = (u, u, 1)". A 3D
position p = (pz py p- 1)T is projected into the image plane
through the mapping

u=7(p) =K ((pa/p-) (0y/p-) )", (1)

where K is the camera matrix. The mapping p =

T
7Y u,d) = ((d_lK_lu)T 1) inverts the projection
with the inverse depth d. We parametrize poses & € se(3)
as elements of the Lie algebra of SE(3) with exponential
map T¢ = exp(&§) € SE(3). We will use R¢ and t¢ for the
respective rotation matrix and translation vector.

3.2. Tracking through Direct Image Alignment

The relative pose between images Iy and [ is esti-
mated by minimizing pixel-wise residuals

EE) = p(ru(€)"Srbru(8)) 2)

u€eN

which we solve as a non-linear least-squares problem. We
implement a robust norm p on the square residuals such
as the Huber-norm using the iteratively re-weighted least
squares method.

One common choice of residuals are the photometric
residuals

Ti(é) i= Iret ()
I

The uncertainty o, ,, in this residual can be determined
from a constant intensity measurement variance o7 and the
propagated inverse depth uncertainty [5]. Pure photometric
alignment uses 7, (&) = 7L (€).

If depth maps are available in both images, we can also
measure the geometric residuals

75(6) = [p/]z — Deurr (7 (p')) “4)

— Leure (7 (Tem ™" (w, Dreg(w)))) . (3)

with p’ := Tem ! (u, Det(w)). The variance of the geo-
metric residual is determined from the variance in the in-
verse depth estimates in both frames [5]. Note that we
can easily use both types of residuals simultaneously by
combining them in a stacked residual. We minimize the
direct image alignment objectives using the iteratively re-
weighted Levenberg-Marquardt algorithm.

We furthermore compensate for lighting changes with an
affine lighting model with scale and bias parameters. These
parameters are optimized with the pose £ in an alternating
way.

3.3. Depth Estimation

Scene geometry is estimated for pixels of the key frame
with high image gradient, since they provide stable dispar-
ity estimates. We initialize the depth map with the propa-
gated depth from the previous keyframe. The depth map is
subsequently updated with new observations in a pixel-wise
depth-filtering framework. We also regularize the depth
maps spatially and remove outliers [5].

We estimate disparity between the current frame and
the reference keyframe using the pose estimate obtained
through tracking.  These estimates are fused in the
keyframe. Only pixels are updated with temporal stereo,
whose expected inverse depth error is sufficiently small.
This also constrains depth estimates to pixels with high im-
age gradient along the epipolar line, producing a semi-dense
depth map.

For direct visual odometry with stereo cameras we esti-
mate depth both from static stereo (i.e., using images from
different physical cameras, but taken at the same point in
time) as well as from temporal stereo (i.e., using images
from the same physical camera, taken at different points in
time).

We determine the static stereo disparity at a pixel by a
correspondence search along its epipolar line in the other
stereo image. In our case of stereo-rectified images, this
search can be performed very efficiently along horizontal
lines. As correspondence measure we use the SSD photo-
metric error over five pixels along the scanline.

Static stereo is integrated in two ways. If a new stereo



Figure 4. Close-by views on the point clouds generated by our method from the Kitti sequences 08, 01, 08, 06, 02 and 04.

keyframe is created, the static stereo in this keyframe stereo
pair is used to initialize the depth map. During tracking,
static stereo in the current frame is propagated to the refer-
ence frame and fused with its depth map.

There are several benefits of complementing static with
temporal stereo in a tracking and mapping framework.
Static stereo makes reconstruction scale observable. It is
also independent of camera movement, but is constrained to
a constant baseline, which limits static stereo to an effective
operating range. Temporal stereo requires non-degenerate
camera movement, but is not bound to a specific range
as demonstrated in [5]. The method can reconstruct very
small and very large environments at the same time. Finally,
through the combination of static with temporal stereo, mul-
tiple baseline directions are available: while static stereo

typically has a horizontal baseline — which does not allow
for estimating depth along horizontal edges, temporal stereo
allows for completing the depth map by providing other mo-
tion directions.

3.4. Key-Frame-Based SLAM

With the tracking and mapping approach presented in the
previous section, it is possible to extract keyframes along
the camera trajectory and to estimate their poses consis-
tently in a global reference frame. The method operates by
tracking the camera motion towards reference keyframes.
Once the motion of the camera is sufficiently large, and the
image overlap is too small, the current camera image is se-
lected as a new reference keyframe. The old reference key
frame is added to a keyframe pose-graph. We estimate rel-



ative pose constraints between the keyframes through pho-
tometric and geometric direct image alignment. We test as
set of possible loop-closure candidates that are either found
as nearby view poses or through appearance-based image
retrieval.

In monocular LSD-SLAM, we need to use Sim(3) pose
representation due to the scale ambiguity. Conversely, for
stereo LSD-SLAM, we can directly use SE(3) parametriza-
tion.

For each candidate constaint K;, between keyframe &
and j we independently compute &, ; and §;; through
direct image alignment using photometric and geometric
residuals. Only if the two estimates are statistically simi-
lar, i.e., if

(€00 €iji) = (€00 &jk)Tz_l(‘sjm °&ij.) )
with X :=3,;+ AdjjkizijkAdjg;ci (6)

is sufficiently small, they are added as constraints to the
pose-graph. To speed up the removal of incorrect loop-
closure candidates, we apply this consistency check after
each pyramid level in the coarse-to-fine scheme. Only if
it passes, direct image alignment is continued on the next
higher resolution. This allows for discarding most incor-
rect candidates with only very little wasted computational
resources.

4. Evaluation

We evaluate our method on the popular and publicly
available Kitti dataset [8]. It provides rectified stereo im-
ages together with Velodyne laser scans captured from a
car driving in various street-scene environments. Specifi-
cally, we used the odometry dataset sequences 00-09 which
provide camera pose ground-truth that can be used to align
several Velodyne scans and to generate denser ground-truth
point clouds in this way.

We present qualitative results of the point clouds gener-
ated from the semi-dense depth maps over the whole tra-
jectory. We also evaluate the accuracy of the reconstructed
point clouds for different processed image resolutions by
comparing them with the Velodyne ground-truth. Finally,
we compare our reconstructions with other state-of-the-art
stereo reconstruction methods in terms of accuracy and run-
time. We use a PC with Intel i7-2600K CPU running at 3.4
GHz for run-time evaluation.

4.1. Qualitative Results

In Fig. 2, we show reconstructions over the full length
trajectories with our method which estimates the camera
motion and semi-dense depth maps in real-time. Loop clo-
sures and pose graph optimization running in a separate
thread allows for keeping the reconstructions globally con-
sistent.

Figs. 1, 3 and 4 show a closer view on the reconstructed
pointclouds. As can be seen, most parts of the high gradi-
ent areas of the image are reconstructed. Using both fixed-
baseline stereo and temporal stereo allows us to estimate a
proper metric scale of the scene.

The main advantage of the proposed method is that
the generated semi-dense maps are directly used for cam-
era tracking and loop closures, while other methods, such
as [10], rely on external keypoint-based odometry. Our ap-
proach results in consistent and visually pleasing 3D recon-
structions.

4.2. Reconstruction Accuracy Depending on Image
Resolution

In order to evaluate 3D reconstruction accuracy, we gen-
erate a ground-truth pointcloud by aligning several Velo-
dyne scans. For every point in the reference point cloud
we estimate a local surface normal by fitting a plane to the
points in a 20 cm neighborhood. For each keyframe, we
reproject the estimated semi-dense point cloud and remove
the points that are higher than the maximum height of Velo-
dyne measurements. For all other points, we determine the
point-to-plane distance to the closest point in the reference
point cloud.

Figure 5 shows the median, 5th and 95th percentiles of
the average point-to-plane distance across all keyframes in
different sequences. The results show that there is no direct
dependency between the resolution of the image and accu-
racy of the resulting pointcloud. On a smaller resolution
images depth-estimation is less sensitive to small repetitive
structures, which results in smaller number of outliers. Also
with all cases we use a sub-pixel depth estimation to deter-
mine depth, which can also lower the difference between
different resolutions.

4.3. Comparison to Other Stereo Reconstruction
Methods

Fig. 6 gives a comparison of reconstructions generated
with our method (LSD) to the point clouds generated by
Efficient Large-Scale Stereo Matching (elas, [9]), Semi-
Global Block Matching (SGBM, [!1]) and regular Block
Matching (BM). For accuracy evaluation, we use the same
method as in Sec. 4.2. Fig. 7 shows an example of a ground-
truth point cloud overlayed with reconstructions from the
stereo methods.

In most of the sequences our method has less or equal
average point-to-plane distance to ground-truth point cloud
than SGBM and BM, but elas often performs slightly bet-
ter than our method. However, elas is a pure stereo recon-
struction algorithm that only uses static stereo cues from
the fixed-baseline camera arrangement. Elas also relies on
an extra, e.g. keypoint-based, visual tracking method, while
our simultaneous tracking and mapping approach uses the
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Figure 5. Point-to-plane distance between ground-truth point clouds and reconstructions with our method generated at different image
resolutions. We give median, 5th, and 95th percentile on the various Kitti sequences.
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Figure 6. Point-to-plane distance between ground-truth point clouds and various stereo-reconstruction methods (including ours). We give
median, Sth, and 95th percentile on the various Kitti sequences.

310x92 620x 184 1240 x 368 method for stereo cameras with traditional stereo and laser-
based approaches. We demonstrate qualitative reconstruc-
tion results on the Kitti dataset and compare the accuracy
of our method to the state-of-the-art stereo reconstruction
methods. These approaches often rely on a separate visual
odometry or SLAM method, e.g. based on sparse interest
points, in order to recover the camera trajectory. Dense
depth is then obtained in the individual stereo frames. To
Mapping time  103ms 145ms 24ms 142ms our knowledge, our approach is the first method that can re-
cover metrically accurate and globally consistent 3D recon-
structions of large-scale environments from a stereo-camera
system in real-time on a single CPU.

Mapping time LSD ~ 5.8ms 23ms 103ms

Table 1. Depth estimation run-time of LSD for different image
resolutions.

LSD SGBM BM elas

Table 2. Depth estimation run-time for different stereo methods.

3D reconstruction directly for tracking and vice versa.
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Figure 7. Single keyframe 3D reconstructions using LSD (purple), elas (blue), SGBM (green) and BM (red) are compared to the point
cloud produced by a Velodyne laser scanner. Laser point clouds from several frames are aligned and combined into a denser point cloud.
The point clouds generated by the stereo reconstruction methods are cut at the maximum measurement height of the Velodyne scanner.
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